非线性演化方程相关论文
主要研究一个与三阶谱问题相联系的非线性演化方程的Darboux变换及其精确解.首先从空间部分谱问题出发,找到其辅谱问题,然后基于该......
某些非线性演化方程拥有很强的物理背景,值得我们去研究。出现在应用科学学科中的许多非线性偏微分方程存在守恒律。在当代非线性......
非线性演化方程通常指的是描述随时间演化的物理现象的一类数学模型,它是非线性系统科学的孤立子理论研究中最前沿的课题之一。近......
学位
非线性是自然界的普遍特性,是所有自然科学和社会科学的分支,并造成了世界的无限多样性、突变性、演化性等。可见研究非线性问题的......
本文应用动力系统的分支理论和Hirota双线性方法对一些非线性演化方程做了研究.首先应用动力系统的分支理论得到了一个非线性色散m......
随着计算机技术的迅速发展以及线性理论的日益完善,非线性科学已经在工程技术和自然科学等领域发挥着越来越重要的作用,并且非线性......
学位
非线性演化方程是描述各种复杂自然现象的重要数学模型,长期以来其研究在数学、物理等诸多学科领域都占据着重要地位。随着计算机......
非线性现象是普遍存在于自然界中,而研究非线性现象的非线性科学更是与各种学科都有着紧密联系,很多的复杂问题都可以用非线性系统建......
在这篇博士学位论文中,我们主要研究了几类非线性演化系统解的整体适定性和无穷维动力系统,得到了一些应用模型中有意义的结果。本文......
非线性演化方程是描述非线性现象的一类非常重要的数学模型。非线性演化方程精确解的符号计算研究始终是数学物理领域很重要的研究......
本文主要研究(3+1)维非线性演化方程和AB-mKdV方程,分别求出了3种相互作用解.我们首先用Bell多项式将约化的(3+1)维非线性演化方程......
到目前为止,衍生出了许多研究非线性方程精确解的方法,例如:近似泛函分离变量法,相容的Riccati展开法,不变子空间法,分离变量法,齐......
自然科学和工程技术中的许多问题的研究,最终都可以归结为对非线性演化方程的求解问题.非线性演化方程可以科学合理地描述相关事物......
本文在介绍孤立子的起源以及研究状况基础上,以构造变系数形式的非线性演化方程族的精确解为目标,将Hirota双线性方法推广应用于变系......
自然理论学科与实际工程技术中许多问题的研究,都可归结为对非线性演化方程的求解问题.非线性演化方程的解能够合理地、科学地解释......
近年来,对非线性问题的研究已成为人们关注的热点,非线性科学也在科学技术的各个领域做出了重大贡献。非线性物理是非线性科学的一重......
在非线性科学迅速发展的今天,研究非线性演化方程的相互作用解和守恒律在物理学的各个领域特别是在孤立子理论中起着至关重要的作用......
随着非线性科学的快速发展,非线性演化方程的求解成为广大物理学、力学、应用数学、工程技术科学、地球科学和生命科学等领域的一......
随着非线性科学的迅速发展,非线性演化方程的求解成为广大物理学、力学、应用数学、工程技术科学、地球科学和生命科学等领域的一......
等离子体是一种由带电粒子和中性粒子组成的、具有集体运动行为的准中性气体团,其主要存在于我们的宇宙空间中.例如,太阳、黑洞吸......
用不变子空间法来求一些非线性演化方程的精确解是比较简单而又有效的.本文主要研究了(2+1)-维无色散变系数Kadomtsev-Petialashil......
该文分别构造了具有2个位势和3个位势的等谱特征问题.从等谱问题出发,利用屠格式导出了著名的广义Burgers方程族和一类新的MKdV-NL......
现代社会的快速发展让我们越来越认识到:这个世界是一个充满了非平衡性、非稳定性和非线性的动力系统.只有非线性模型才能更好的解......
该文研究的主要内容为:在张鸿庆教授的"AC=BD"理论的指导下,来研究一类非线性微分方程精确求解中的变换问题.我们将张鸿庆教授的"A......
孤子方程的精确解,在理论方面能帮助我们了解方程的代数结构和基本属性,在实际应用方面能解释一些相关的自然现象.而Pfaffian化技巧......
长波在非线性色散介质表面的传播模型,从20世纪60年代开始,一直受到数学家和物理学家的广泛关注.而它的抽象模型大多用非线性演化方......
本文研究的主要内容包括两个方面:孤立子方程的求解与可积系统。在第二章中,首先通过引进椭圆函数φ(ξ)作为一个新的变量进一步改进......
本文主要研究和分析了下面的内容:研究了在物理学领域中提出的一些非线性演化方程或方程组的精确解的求解问题.考虑的问题主要为:......
随着非线性科学的迅猛发展,非线性演化方程(包括非线性常微分方程、非线性偏微分方程、非线性差分方程和函数方程等)及其应用于图......
本文研究的非线性演化方程起源于Benjamin-Ono Kortewey de Vries方程u+Hu+u+βu+(u)=0, u(x,0):U(x)x∈R,t≥0,此方程是罗德海研究大气......
本文主要运用留数对称和非局域对称结合Lie点对称分两章来对非线性演化方程进行对称约化和求解精确解,获得了以下结果: 第一,运用(2......
本文由一个4×4的矩阵谱问题,导出两类与之相联系的新的非线性演化方程,并利用迹公式证明了这两类非线性演化方程具有广义Hamilton......
孤立子理论是应用数学和数学物理的一个重要组成部分,在流体力学,等离子体物理,经典场论,量子场论等领域有着广泛的应用,并且它蕴藏了一......
由Wahlquist和Estabrook提出的延拓结构理论是处理可积的非线性演化方程的强有力工具。但由于它的延拓结构方程是非协变的,于是Guo......
寻求非线性演化方程的精确解在非线性科学中是非常重要的任务,也是一项很有意义的工作.首先,给出由修正Gelfand-Dikii系统发展而来的......
在线性理论日臻完善的今天,非线性科学已经蓬勃发展于各个研究领域而成为研究焦点。因此在研究过程中将无法避免地碰到各种各样的非......
本文引入带有两个位势的4×4的矩阵谱问题,导出一族广义耦合的Harry-Dym方程及其双Hamilton结构。借助Lax对的非线性化方法,广义耦合......
学位
随着非线性科学的发展,出现了大量非线性发展方程,在不同的物理背景下起着重要的作用.为了探索这些方程在应用中的价值,求解出各种非线......
随着科学技术的发展和线性理论的日趋完善,非线性科学已经在各个研究领域的作用越来越重要,逐步成为科学研究的焦点.物理、化学、生物......
本文的研究内容主要包括:可积系统的扩展模型与非线性演化方程的Painlevé分析.第一章简要介绍了孤立子研究的历史与可积系统.第二......
利用具有Weierstrass椭圆函数解的方程,首先获得了投影Riccati方程的两组新解.由于投影Riccati方程可用于多种具孤子解的非线性演......
非线性演化方程的许多行波解可以写成满足投影Riccati方程的两个基本函数的多项式形式.利用这一性质,通过建立一般的椭圆方程与投......
通过新的结构,证明一类带记忆项的非线性演化方程在空间H10(Ω)×H10(Ω)×L2(R+;H10(Ω))中存在全局吸引子,其中非线性项满足临界......
The Impacts of Initial Perturbations on the Computational Stability of Nonlinear Evolution Equations
The impacts of initial perturbations on the computational stability of nonlinear evolution equations for non-conservativ......
对Jacobi椭圆函数展开法进行了扩展, 且应用修正过的方法获得了若干非线性波动方程的更多的准确周期解, 补充了前面研究所得的结果......