论文部分内容阅读
非线性现象是普遍存在于自然界中,而研究非线性现象的非线性科学更是与各种学科都有着紧密联系,很多的复杂问题都可以用非线性系统建立模型,从而对非线性系统的研究就显得格外重要。孤立子理论是非线性研究中的重要的一支,是当今非线性学科的热门内容和课题。对非线性系统孤立波解的研究有助于人们理解系统里的运动变化,从而揭示现象背后的本质规律,在物理学和工程技术领域体现了极大的应用价值。在过去的几十年里,随着计算机硬件和软件技术的发展,在应用数学和工程领域的研究方法得到了创新,我们的计算能力得到了很大的提升,绘图能力也得到了加强,可以全方位、多角度的去观察,也可以深入图像的局部进入微观领域中。这也很大程度地提高了关于非线性演化方程的求解和绘图能力,使在对孤立子的研究上走的更深更远。
本文研究了非线性色散波方程的精确行波解,运用动力系统理论分叉方法和几何奇异摄动理论,对含有奇异线的非线性演化方程进行了讨论研究,展示了其内部随参数变化的丰富的孤立波解,给出了解的解析表达式,并作出了解的二维和三维图像;同时对时滞扰动下的部分孤波解的稳定性进行了研究,得到了相应的结果。具体工作如下:
第一、二章是绪论和基本理论,综述了非线性演化方程的研究背景、研究进展和现状,介绍了孤立子理论及其主要的研究方法和本文采用的动力系统首次积分方法,同时介绍了在精确解的求解过程中经常要用到的椭圆积分函数。
第三章研究了含有单奇异线的双组份Degasperis-Procesi方程,通过时间尺度变换,将奇异行波系统转化为正则动力系统。因为这样的含有单奇异线双组份Degasperis-Procesi方程的典型性,对这个方程进行了最为详细的分析讨论,对其精确孤立波解和图像进行了完全的展示。通过对参数变化范围的讨论,求得了方程含有的丰富的精确行波解,有kink和anti-kink解、compacton解、anti-compacton解、peakon解、valleyon解、周期compacton解、周期anti-compacton解、周期peakon解、周期valleyon解、loop解、anti-loop解、周期loop解、一些无界解以及第二个变量v(x,t)出现的新型的不连续解及其周期解等。这些解的动力学性质和参数所满足的条件相对应,在参数连续变化过程中,可以看出解进行了怎样的对应变化。
第四章从定性角度研究了含有双奇异线的双组份Degasperis-Procesi方程的行波解,这时的首次积分已不再是有理形式,借助于微分方程定性理论,将奇异系统转化为正则系统,根据双组份DP方程正则系统的相图轨道的定性性质,判断出方程含有的丰富的孤立波解,包括尖波解、光滑周期波解、正圏孤子解、周期圏孤子解、光滑的峰形孤立波解、无界解等,并且在参数取一些特殊值的条件下,求出了孤立波解的精确表达式。
第五章研究了广义浸入色散K(2,2)方程的行波解,运用动力系统理论分叉方法,分析其动力学性质,对系统的相图轨道进行讨论,得到了浸入色散K(2,2)方程的圈孤立波解、周期圈孤立波解、扭波和反扭波解、尖峰孤立波解、周期尖波解、光滑孤立波解、周期光滑孤立波解以及一些无界解等。同时通过系统的动力学行为,对尖峰孤立波解的产生机理进行了讨论,得出了在不同参数变化时,周期尖波解和光滑孤立波解的变化,它们共同向尖峰孤立波解转变。最后与其他参考文献结论的比较说明了色散扰动项不改变原来解的分布。
第六章研究了广义色散Degasperis-Procesi方程的行波解,通过动力系统理论分叉方法,对系统的相图轨道进行分析,得到了广义色散Degasperis-Procesi方程的丰富的精确解,像圈孤立波解、周期圈孤立波解、扭波和反扭波解、尖峰孤立波解、周期尖波解、光滑孤立波解、周期光滑孤立波解以及一些无界解等。同时对尖峰孤立波解的产生机理进行了讨论,最后通过解的比较说明了色散扰动项不改变原来解的分布。
第七章研究了时滞扰动条件下Schr?dinger方程的扭结波和反扭结波解的存在性,在分布延迟核是强核时,将具有时滞扰动的方程转化为一个无延迟的四维常微分系统。由于时滞系数?足够小,四维常微分系统是一个标准奇异摄动系统。通过奇异摄动理论,结合Melnikov函数方法证明了时滞Schr?dinger方程在0<τ<<1,c=-1+O(τ)条件下存在扭结波和反扭结波解。
第八章研究了时滞扰动条件下Schr?dinger方程的周期波解的存在性,通过奇异摄动理论和Melnikov函数方法,结合数学计算软件证明了时滞Schr?dinger方程存在周期波解。
第九章对全文进行了总结,并提出了展望。
本文研究了非线性色散波方程的精确行波解,运用动力系统理论分叉方法和几何奇异摄动理论,对含有奇异线的非线性演化方程进行了讨论研究,展示了其内部随参数变化的丰富的孤立波解,给出了解的解析表达式,并作出了解的二维和三维图像;同时对时滞扰动下的部分孤波解的稳定性进行了研究,得到了相应的结果。具体工作如下:
第一、二章是绪论和基本理论,综述了非线性演化方程的研究背景、研究进展和现状,介绍了孤立子理论及其主要的研究方法和本文采用的动力系统首次积分方法,同时介绍了在精确解的求解过程中经常要用到的椭圆积分函数。
第三章研究了含有单奇异线的双组份Degasperis-Procesi方程,通过时间尺度变换,将奇异行波系统转化为正则动力系统。因为这样的含有单奇异线双组份Degasperis-Procesi方程的典型性,对这个方程进行了最为详细的分析讨论,对其精确孤立波解和图像进行了完全的展示。通过对参数变化范围的讨论,求得了方程含有的丰富的精确行波解,有kink和anti-kink解、compacton解、anti-compacton解、peakon解、valleyon解、周期compacton解、周期anti-compacton解、周期peakon解、周期valleyon解、loop解、anti-loop解、周期loop解、一些无界解以及第二个变量v(x,t)出现的新型的不连续解及其周期解等。这些解的动力学性质和参数所满足的条件相对应,在参数连续变化过程中,可以看出解进行了怎样的对应变化。
第四章从定性角度研究了含有双奇异线的双组份Degasperis-Procesi方程的行波解,这时的首次积分已不再是有理形式,借助于微分方程定性理论,将奇异系统转化为正则系统,根据双组份DP方程正则系统的相图轨道的定性性质,判断出方程含有的丰富的孤立波解,包括尖波解、光滑周期波解、正圏孤子解、周期圏孤子解、光滑的峰形孤立波解、无界解等,并且在参数取一些特殊值的条件下,求出了孤立波解的精确表达式。
第五章研究了广义浸入色散K(2,2)方程的行波解,运用动力系统理论分叉方法,分析其动力学性质,对系统的相图轨道进行讨论,得到了浸入色散K(2,2)方程的圈孤立波解、周期圈孤立波解、扭波和反扭波解、尖峰孤立波解、周期尖波解、光滑孤立波解、周期光滑孤立波解以及一些无界解等。同时通过系统的动力学行为,对尖峰孤立波解的产生机理进行了讨论,得出了在不同参数变化时,周期尖波解和光滑孤立波解的变化,它们共同向尖峰孤立波解转变。最后与其他参考文献结论的比较说明了色散扰动项不改变原来解的分布。
第六章研究了广义色散Degasperis-Procesi方程的行波解,通过动力系统理论分叉方法,对系统的相图轨道进行分析,得到了广义色散Degasperis-Procesi方程的丰富的精确解,像圈孤立波解、周期圈孤立波解、扭波和反扭波解、尖峰孤立波解、周期尖波解、光滑孤立波解、周期光滑孤立波解以及一些无界解等。同时对尖峰孤立波解的产生机理进行了讨论,最后通过解的比较说明了色散扰动项不改变原来解的分布。
第七章研究了时滞扰动条件下Schr?dinger方程的扭结波和反扭结波解的存在性,在分布延迟核是强核时,将具有时滞扰动的方程转化为一个无延迟的四维常微分系统。由于时滞系数?足够小,四维常微分系统是一个标准奇异摄动系统。通过奇异摄动理论,结合Melnikov函数方法证明了时滞Schr?dinger方程在0<τ<<1,c=-1+O(τ)条件下存在扭结波和反扭结波解。
第八章研究了时滞扰动条件下Schr?dinger方程的周期波解的存在性,通过奇异摄动理论和Melnikov函数方法,结合数学计算软件证明了时滞Schr?dinger方程存在周期波解。
第九章对全文进行了总结,并提出了展望。