单支方法相关论文
科学与工程技术中的许多系统都具有散逸性,即系统具有一有界吸引集,使从任意初始条件出发的解经过有限时间后进入并随后始终保持在......
延迟积分微分方程在物理学、生物学、化学、医学、人口学、经济学、自动控制等众多领域有广泛应用,其理论和算法研究具有毋庸置疑......
泛函微分与泛函方程是由泛函微分方程与泛函方程耦合而成的一类混合问题,在众多领域有广泛应用,对其算法理论的深入研究具有毋庸置......
时滞积分–微分方程是工程中一类重要的方程,在力学和生物学等领域有着广泛的应用.然而,这类方程的精确解却并不容易求得,所以探求......
泛函微分方程(FDEs)在自动控制、生物学、医学、化学、人口学、经济学等众多领域有着广泛应用,其理论和算法研究具有无可置疑的重要性......
设Cd为d维的复欧几里得空间,为其中的内积,|| · ||是由该内积导出的范数.考虑如下形式的非线性泛函积分微分方程(FIDEs)初值问题......
针对非线性分数阶中立型延迟微分方程(FNDDEs)初值问题这里的00是给定的常数,N∈Rd×d,‖N‖Rd以及φ:[-τ,0]→Rd是连续映射,且满......
脉冲微分方程(IDEs)广泛应用于生态动力学、医学、经济学、自动控制等领域.由于脉冲微分方程的真解难以获得,因而其数值方法的研究......
泛函微分与泛函方程是泛函微分方程和泛函方程耦合而成的一类系统,它可以用来描述物理学和工程技术中的很多问题,但由于这样的系统......
延迟微分方程广泛出现于物理、生物、工程、医学、经济学等领域,其算法理论研究具有十分重要的意义.1989年,Torelli首次讨论了非线......
龙格—库塔方法是解延迟微分方程的一类有效算法,对它的理论研究无疑具有重要的意义,该文为此讨论了多导龙格-库塔方法的渐近稳定......
Volterra型延迟积分微分方程(VDIDEs)广泛运用于物理学,生物学,生态学及控制论等科学领域,延迟积分微分方程通常很难获得理论解的解......
延迟微分方程广泛地存在于物理、经济、生物、神经网络、动力系统等众多领域.因此其数值算法的稳定性研究从理论到实践都具有重要......
延迟积分微分方程在物理学、生物学、化学、医学、人口学、经济学、自动控制等众多领域有广泛应用,其理论和算法研究具有毋庸置疑的......
学位
设Rd为d维的欧几里得空间,为其的内积,‖·‖为该内积导出的范数。考虑如下Hale型非线性中立型延迟积分微分方程(NDIDEs)初值问题(IV......
泛函微分与泛函方程是由泛函微分方程与泛函方程耦合而成的一类混合问题,在众多科学与工程领域有着广泛应用,其理论与数值方法的研......
本文研究求解D(α,(L),(β1),(β2))类问题的Runge-Kutta方法和单支方法的收敛性,所得结果如下: 1.若Runge-Kutta方法代数稳定,......
泛函微分与泛函方程是由泛函微分方程与泛函方程耦合而成的一类混合问题,在众多领域有广泛应用,对其算法理论的深入研究具有毋庸置疑......
学位
延迟积分微分方程在生物学、物理学、医学、化学、经济学、生态学以及航天航空等众多科学领域有广泛应用,其理论和算法研究具有毋庸......
本文研究刚性延迟积分微分方程单支方法的B-收敛性,结果表明:A-稳定的单支方法是B-收敛的,其B-收敛阶等于其经典相容阶.最后的数值......
期刊
本文研究Rα,β类非线性中立型延迟微分方程单支方法的数值稳定性,结果表明:A-稳定的单支方法是数值稳定的,强A-稳定的单支方法是......
B-收敛和D-收敛的概念被推广到了变时滞微分代数方程问题,给出了D_A-收敛的定义,讨论了该类问题的D_A-收敛性,并给出了相应的误差......
本文研究了非线性延迟积分微分方程单支方法的散逸性.把G(c,p,0)-代数稳定的单支方法应用到以上方程中,得到了在有限维空间和无限......
控制系统在实际问题中有广泛应用,众多文献对系统本身及其数值方法的稳定性进行了深入研究。将单支方法用于求解非线性控制系统,获......
本文将文[1]中初值问题条件改造为单边Lipschitz条件后,给出了非线性多延迟微分方程(MDDEs)的单支方法GAR-稳定的一个充分条件,证......
本文研究求解R(α,β1,β2,γ)类非线性中立型延迟积分微分方程单支方法的数值稳定性,结果表明:在一定条件下,A-稳定的单支方法是数值稳定......
对一类非线性中立型延迟积分微分方程的B-收敛性进行了研究,对于单支方法运用于这类方程得到的数值方法,得到了该方法B-收敛的一个......
该文将θ-单支方法转化为Runge-Kutta方法来研究,得到了一些θ-单支方法的代数稳定性结果:(1)对任给的θ∈(0,1),令β=(2θ-1)/θ2......
本文在单支θ-方法的数值稳定性基础上,进一步研究了利用数值方法中更为广泛的一类单支方法,救解D(α,β,γ)类非线性刚性积分微分方程的......
本文对[1]中初值问题条件改造后,给出了非线性多延迟微分方程的单支方法GR-稳定的一个充分条件,并将[1]的部分工作推广到了多延迟的......
利用一般线性方法的代数稳定性和(k,p,q)-代数稳定性的概念,得到了θ-单支方法数值稳定的代数条件,即当θ≥1/2时,θ-单支方法是代数稳......
讨论用迭代方法求解微分代数方程。针对一类非线性微分代数方程连续时间波形松弛迭代格式,应用一般的单支方法和线性多步法,得到离......
该文探讨了单支方法关于一类中立型延迟微分方程(NDDEs)系统的整体稳定性和渐近稳定性。在适当的条件下,获得了单支方法关于NDDEs系统......
本文研究求解非线性延迟积分微分方程的单支方法的数值稳定性,其中积分部分采用复化梯形公式计算。分析表明:在一定条件下,A-稳定的单......
将单支方法用于求解一类刚性中立型延迟微分方程,结果表明:在问题真解稳定(或渐近稳定)的条件下,A-稳定的单支方法是数值稳定的,强A-......
对一类非线性中立型延迟积分微分方程的数值稳定性进行了研究.将单支方法运用于这类方程得到了数值方法,根据A-稳定等价于G-稳定的理......
分数阶微积分是传统整数阶微积分理论的推广,它源于Leibniz和Euler的一些猜测并发展至今.由于分数阶微分算子的非局部性,这为描述......
本文讨论延迟微分方程单支方法的非线性稳定性.对于Kα,β,γ类非线性延迟微分方程,我们证明带有线性插值的G(c,p,q)-代数稳定的单......
讨论了一类非线性多延迟微分方程(MDDEs)理论解的渐近稳定性和用单支方法求解该类非线性问题的数值解的弱渐近稳定性。......
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们......
ue*M#’#dkB4##8#”专利申请号:00109“7公开号:1278062申请日:00.06.23公开日:00.12.27申请人地址:(100084川C京市海淀区清华园申请人:清......
延迟微分代数方程常出现在自动控制、化学反应模拟、电力和电路分析、多体动力学、生物、医学、国民经济等许多实际应用问题中.延......
随机延迟微分方程既可以视为确定性模型问题延迟微分方程考虑了随机因素后的推广,也可以视为非确定性模型问题随机常微分方程考虑了......
<正>现有文献中对于非线性延迟微分方程渐近稳定性及其数值方法的稳定性研究大都局限于常延迟的情形,例如可参见匡蛟勋[1-3],黄乘......
<正> 1.介 绍 收敛性是对数值方法的一种起码要求,不收敛的数值方法没有任何实际应用价值,因此,对数值方法的收敛性分析,其意义是......