光学薄膜在光热操控中的应用研究

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:hengtonggss
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光镊是一种基于光的力学效应捕获和操控颗粒的技术,由于其具备实时操控、非接触、无机械损伤的优势,在微生物分子、分散体系、活体细胞检测等研究领域获得了广泛的应用。然而基于高功率、紧聚焦激光的传统光镊技术的功能单一、操控自由度小,而且难以在大面积范围内同时捕获和组装不同尺寸的微粒或者细胞。为了克服传统光镊的这些应用困境,实验物理学家们扩展了许多新型的光操控方法,其中一种方法是利用激光产生的热效应操控微粒,即光热操控。本文提出基于一维光子晶体和金纳米薄膜的光热效应实现对介质微粒、生物细胞的大面积组装、迁移、捕获等多功能操控,具体研究内容和取得的成果如下:1、一维光子晶体的制备和表征。利用表面等离子体增强气相沉积法制备了一维光子晶体,并通过自主搭建的泄露辐射显微镜对一维光子晶体整体的结构参数进行了表征,证明样品结构满足实验要求。2、基于一维光子晶体的光热效应,实现微粒的多功能光热操控。首先通过宽场激发一维光子晶体的表面倏逝波,由于动量传递,粒子受到倏逝波的光散射力和光梯度力。光照区域内的微粒会在光力的作用下沿着倏逝波的传输方向向前迁移,且微粒的迁移速度具有偏振和角度依赖性,速度可调节。其次,在实验中首次发现一维光子晶体的内部模式会产生明显的热对流,在光力和热对流力的共同作用下,能够实现微粒的大面积组装和清除。该方法无结构激发、基片可重复使用,具有成本低、实用性强的优势。3、提出聚焦布洛赫表面波可应用于光热操控细胞和微粒,扩展了一维光子晶体的应用领域。首先利用有限元方法模拟分析了聚焦布洛赫表面波的光热效应包含光力、长程的热对流力以及局部的热泳力,在理论计算的基础上,将构造的环形角向偏振光作为入射光,高效率地激发聚焦布洛赫表面波。布洛赫表面波向中心传播干涉形成强局域电场,实现了酵母细胞和大肠杆菌的精准捕获、组装以及粒子筛选。该方法具有无损和低功率的特性,为生物细胞的远程传输、分类、自组装提供了新的研究思路和手段。4、基于金纳米薄膜的高光热转换效率,利用低功率聚焦激光在表面诱导生成气泡,导致马兰戈尼对流的实现。通过有限元方法分析得出气泡组装的影响因素,结合实验,改变实验条件如激光功率、金膜厚度、激光与气泡的相对位置,证明了该方法能够对介质微粒、纳米线、藻类、金属颗粒实现无差别对称或者非对称组装。该方法具有功能集成、实用性强的特点,未来可应用于微纳米尺度图案。
其他文献
癌症已经成为一个世界性难题,传统的化疗、放疗和手术治疗虽然被广泛应用并取得了一定的成果,但依然存在一些固有的缺陷。光动力治疗与光热治疗是新兴的治疗癌症的方法,能为主流的三大疗法提供一些补充和帮助。这两种疗法具有副作用小、特异性强和治疗时间短等优点,因此被重点关注和研究。光动力治疗是通过光照将光敏剂分子变为激发态,之后分子会通过系间窜越转化为能级相对较低的三重态,并将能量或者电子转移到周围的底物分子
二维过渡金属硫族化合物(2D-TMDs)因具有独特的电子结构、优越的物化性质在催化、能源、电子以及光电器件等领域表现出潜在的应用价值。化学气相沉积(CVD)技术制备的2D-TMDs具有尺寸大、层数可控、生长速度快以及质量高等特点,因而成为实验室中制备2D-TMDs最常使用的方法。CVD制备2D-TMDs的过程中,衬底的选择尤为重要,其不仅为2D-TMDs的生长提供支撑,同时也会通过影响生长动力学进
二维材料物性奇特,在催化、能源储存和转换领域、微电子领域有着巨大的科学研究、工业应用以及经济价值。本论文立足于二维材料研究的前沿问题,从新材料、新机制、新应用、新手段四个维度对二维材料展开探索,以期获得性能优异的电子器件和光电子器件。作者在新型二维半导体材料ZnIn2S4、准一维层状材料Ta2Ni3Se8、过渡金属硫族化合物ReSe2以及单元素二维材料Te进行了四个研究工作。论文分为以下六个章节:
为满足能源、信息等领域的快速发展而带来的新要求,新材料的研究正朝着多功能化、小型化的方向发展,这就要求新材料自身具备多种序参量(电荷、自旋、轨道和晶格)耦合且能够对不同外场(如声、光、热、力、电和磁场等)产生响应,从而为器件设计制造提供优良的载体。因此寻找具备室温以上低场响应的单相多参量复合功能材料是一项具有现实意义但又充满挑战性的工作。层状类钙钛矿氧化物由于其独特的层状结构,可以在同一晶体结构中
随着我国石油开发步入中后期阶段,勘探的主要目标转变为非常规油气藏,勘探难度极高。因此,油气勘探开发技术亟需科技创新发展。地球物理测井是油气勘探的关键技术,其使用特定的仪器,观测井眼内不同深度地层的各种地球物理特性。基于这些观测数据,岩相识别旨在判别地层的岩性成分,为实时钻井、地质评价和储层建模提供基础。传统测井岩相识别方法由地球物理学专家建立基于经验的测井岩相关系模型实现。然而,随着测井、地质资料
电磁逆散射方法建立在全波电磁计算的基础上,故相比于其它微波成像方法,逆散射重建有着更精确且普适的物理模型,和更广泛的应用前景。当前逆散射重建方法大多应用于石油勘探、建筑物内部透视和乳腺癌诊断成像等需要低频电磁波穿透障碍物的场景,故需要对亚波长量级的精细目标进行重建,构成了巨大的挑战。此外,成像区域内金属和非金属材料混杂的情况下,后者的重建极易受前者扰动,给定量重建带来不确定性。最后,在这些复杂场景
近年来,随着高清摄像头的普及和短视频应用的兴起,视频数据呈爆炸式增长,传统基于人力的视频分析方法难以满足现实应用需求。基于人工智能,尤其是基于深度学习的智能视频分析算法逐渐成为学术界和工业界的研究热点。时域动作定位作为其中的一项关键技术,其旨在找到感兴趣的动作在视频中的起始时间和结束时间,在视频检索、体育赛事智能化解读等系统中具有重要的应用价值。然而,现有的大多数时域动作定位算法都是基于全监督的,
混合模式和先进模式是未来国际热核聚变实验堆(International Thermonuclear Experimental Reactor,ITER)的基本运行模式。这两种运行模式优化了托卡马克装置中非感应的靴带电流占总等离子体电流的份额,对外部非感应电流驱动设备的依赖程度最低。靴带电流的电流密度分布是偏离磁轴的,因此经过优化后的大份额的靴带电流整体抬升了芯部的安全因子剖面,安全因子最小值qmi
石墨烯在众多领域的优异性质和应用需求不断鼓舞并促进着其制备方法的研究。在探索的众多制备方法中,电化学方法因其温和的条件、可控的操作以及可观的产率被认为是最具工业化前景的途径之一。本论文围绕电化学剥离中的电解液、电压和电极等实验参数展开研究,旨在开发低成本、高产率的电化学方法来制备出不同性质的石墨烯产物,并对石墨烯的储能、电热和光热性能做了研究。在本论文第二章中,首先制备了一种新型绿色溶剂—一三组分
近几十年来,纳米材料以其优异独特的物理化学性质,在发光二极管、太阳能电池、光催化、生物检测等诸多领域展现出了广阔的应用前景,并受到了人们越来越多的关注。然而,由于量子尺寸效应,与块状材料相比,纳米材料中强的库仑相互作用导致激发态弛豫及表界面电荷转移过程更为复杂,相关微观动力学机理方面的认识仍十分匮乏;这不仅影响到纳米材料的设计构筑与调控,也大大阻碍了相关的应用研发。因此,深入理解纳米材料激发态的微