基于车辆状态参数估计的商用车气压电子制动主动安全控制策略研究

来源 :吉林大学 | 被引量 : 0次 | 上传用户:kocis2815
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着经济的飞速发展,中国的商用车行业也在蓬勃发展。商用车具有质量大、质心高、体积大等特点,在紧急行驶工况下,车辆容易发生失稳,对车辆的行驶安全性带来巨大的隐患。气压电子制动主动安全控制系统,可以在紧急行驶工况下有效的改善车辆的行驶状态,提高车辆的行驶安全性。因此,基于商用车气压电子制动系统(EBS,Electronic Braking System)对商用车主动安全制动控制进行研究具有重要意义。本文依托国家重点研发计划子课题“面向紧急自动和再生制动的插电式混合动力客车线控制动技术研究”(编号:2018YFB0105905-02)。改进设计了一种商用车气压EBS构型方案,对气压EBS及其关键部件双通道轴调节器的压力响应特性进行AMESim仿真研究。在此基础上设计基于车辆状态参数估计的商用车气压电子制动主动安全控制策略。根据改进设计的商用车气压EBS构型方案搭建了气压EBS主动安全控制硬件在环试验台,并通过该试验台在不同工况下,对基于车辆状态参数估计的商用车气压电子制动主动安全控制策略进行试验研究。本文进行的具体研究工作如下:(1)改进设计一种商用车气压EBS构型方案。通过测试、拆解对该构型方案关键部件双通道轴调节器的内部结构、工作原理及运动学方程进行研究。基于AEMSim仿真软件建立双通道轴调节器和气压EBS的仿真模型,并在此基础上,先研究分析了双通道轴调节器和气压EBS开环压力响应特性;再研究分析了系统关键参数对双通道轴调节器和气压EBS压力响应特性的影响。(2)针对商用车气压电子制动主动安全控制,在估算纵向车速和质心侧偏角时存在估计精度不高、车辆系统非线强耦合、传感器噪声时变未知等问题,设计了改进的强跟踪自适应容积卡尔曼滤波估计器。该估计器以估算精度高的容积卡尔曼滤波算法为基准,然后分别对具有强鲁棒性的改进强跟踪滤波算法和具有自适应估计传感器噪声的Sage-Husa估计器进行融和。最后在不同工况下对改进的强跟踪自适应容积卡尔曼滤波估计器的有效性进行仿真验证。(3)针对车辆模型参数摄动及外界扰动对商用车气压电子制动主动安全控制性能产生影响的问题,以滑模控制理论和非线性扰动观测器理论为主线,分别结合改进的自适应滑模趋近律技术、二阶滑模技术、RBF自适应神经网络技术,设计了商用车气压电子制动主动安全控制的ABS、ESC、RSC控制策略。并在此基础上,根据车辆失稳危险等级程度和侧翻极限阈值,再结合ABS控制策略,设计了商用车气压电子主动安全控制的联合控制策略。(4)在MATLAB/Simulink、Truck Sim、AMESim中,搭建基于车辆状态参数估计的商用车气压电子制动主动安全控制策略联合仿真平台。以MATLAB/Simulink软件为主仿真环境,搭建上述控制策略模型。车辆动力学模型和气压电子制动系统模型分别在Truck Sim和AMESim仿真软件中搭建。最后在不同的仿真工况下,对基于车辆状态参数估计的商用车电子制动主动安全控制策略的可行性和控制精度进行仿真研究分析。仿真研究显示,上述控制策略控制效果较好,能够有效提高车辆行驶安全性。(5)根据商用车气压EBS和实时系统,搭建气压EBS主动安全控制硬件在环试验台。并通过该试验台,在不同工况下对基于车辆状态参数估计的商用车气压电子制动主动安全控制策略进行硬件在环试验研究。硬件在环试验结果更进一步证明了上述控制策略的有效性。
其他文献
一直以来,工程车辆在基础建设、工业生产以及矿山开采等领域扮演着重要角色。然而在节能降耗的大趋势下,工程车辆作为高能耗、高排放装备,其发展正处于技术升级革新的关键阶段。目前,混合动力技术作为实现节能减排的有效方案,已在汽车领域实现应用并趋于成熟,而能量管理则是直接决定混合动力系统性能表现的关键技术。因此开展混合动力工程车辆的能量管理方法研究对促进混合动力工程车辆的发展具有重要的现实意义。本文在综述国
汽车工业历经百年发展逐渐从生产/交通工具向消费品转变,人们也越来越注重汽车行驶过程的运动品质。在纵向运动方面,运动品质通常指汽车的驾驶性,要求汽车速度好控、驾驶感觉符合人的心理期望、不良的运动响应少、驾驶感觉一致性好。良好的驾驶性已成为驱动消费者购买汽车的重要因素。为了保证汽车具有良好的驾驶性,一方面,由于缺乏驾驶性调教的理论依据,汽车厂商广泛通过经验丰富的主观评车师进行大量的实车场地试验标定改善
车辆智能化已经成为现代汽车行业发展的必然趋势,而环境感知技术是实现车辆智能化的基础和关键,其中道路可行驶区域检测是环境感知研究的重点内容,是决定智能车辆自动化水平的核心技术之一。随着深度学习的兴起,深度卷积神经网络在目标识别方面相关研究取得的显著成果直接影响并促进了智能汽车环境感知技术的发展,但由于网络的性能受其空间和时间复杂度的制约,这种矛盾导致现有的深度网络应用于智能车辆时难以同时满足环境感知
在全球能源短缺和环境污染日益严峻的背景下,新能源汽车领域关键技术不断发展,大力推进插电式混合动力汽车的发展是通往全面普及纯电动汽车的必由之路。插电式混合动力系统是一种非线性、多变量且时变的复杂系统,由于其特殊的能量分配结构,对发动机、电机等动力源的控制与传统混合动力系统相比更为复杂,能量管理策略作为混合动力系统的关键技术之一,如何在满足车辆行驶需求和驾驶员动力需求的前提下对各动力源进行优化控制,实
汽车NVH性能是汽车非常重要的性能指标,也是引起车辆各种故障的主要原因。传递路径方法是分析振动噪声问题的很好方法,但是现有传递路径分析方法偏重于试验,较少与数值仿真相结合,且试验周期长,更多用于解决汽车NVH特定具体问题,很少用于汽车NVH的优化和正向开发,同时现有TPA大多从整车系统角度分析NVH问题,较少从各子系统(如激励源特性和柔性连接特性等)角度来进行汽车NVH分析与优化,所以提出能基于子
车辆行驶过程中,驾驶员需要通过视觉获取90~99%的路况信息,清晰的视野是保障驾驶安全性和舒适性的必要条件。降雨工况下,雨水积聚在侧窗和外视镜表面形成水膜、溪流或者水滴,折射和阻挡光线,使驾驶员视野模糊,增加交通隐患。因此,准确预测汽车在风雨环境中行驶时的侧窗水相分布,对水污染程度进行合理的评价;分析不同行驶环境下的变化规律,并开展优化设计以提高视野的清晰度,具有重要意义。然而现阶段汽车空气动力学
随着社会经济水平的提高、人们出行需求的迅速增长,持续上升的汽车数量导致了城市交通拥堵日益严重、能耗攀升、交通事故频发。如何防止交通拥堵、降低耗能、提高车辆行驶安全性是人们日臻重视的重要课题。汽车作为主要交通运载工具肩负着巨大的责任以改善当下交通系统严重的能源耗费、拥堵和安全等问题,因此在技术层面对车辆的生态性进行改进与完善是解决上述问题的重中之重。在此背景下,不断推动汽车安全、节能、高效的智能生态
汽车高速行驶时,风噪是影响舒适性的重要指标,而风噪仿真优化是车型开发前期的必要手段。由于风噪声传播过程复杂,以往基于车窗压力脉动仿真进行了大量的汽车风噪优化工作,而侧窗压力脉动中占主要能量贡献的水动压车窗透过效率远低于声压,导致车窗平均压力脉动难以反映车内乘员人耳风噪感受的正确变化趋势;且由于人耳构造和心理声学的影响,单纯以总声压级为指标不能反映乘员人耳的真实感受,难以应用于风噪优化。因此,本文基
轮胎作为汽车与路面接触的唯一部件,其力学特性直接影响汽车的动力性、操纵稳定性、乘车舒适性、安全性及燃油经济性等性能。汽车轮胎稳态滚动阻力作为轮胎力学特性之一,对汽车的燃油经济性、轮胎使用寿命、驱动制动及汽车操纵性能具有重要的影响,也是轮胎结构设计中的重点研究课题。目前,汽车轮胎稳态滚动阻力的研究主要是以室内台架实验为主,道路实验为辅,其实验方法仍依赖于大型进口实验装置和在标准工况下的分析,而轮胎滚
在汽车轻量化的背景下,铝合金由于具有密度小、比强度高、耐腐蚀等的特点在汽车领域中的应用越来越广泛。而铝合金板材室温成形性较差,温成形技术可以提高金属材料的成形性且成形回弹小、精度高,可用于生产复杂车身零部件。铝合金板材在生产中由于轧制工艺等原因普遍存在各向异性。各向异性的存在使板材在复杂应力状态下变形路径明显区别于各向同性材料,导致各向同性的本构模型仿真预测的失效极限不可靠。同时,温成形过程会导致