考虑温成形历史的AA5754铝合金构件静力学性能研究

来源 :吉林大学 | 被引量 : 0次 | 上传用户:wa1gwe52rg15
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在汽车轻量化的背景下,铝合金由于具有密度小、比强度高、耐腐蚀等的特点在汽车领域中的应用越来越广泛。而铝合金板材室温成形性较差,温成形技术可以提高金属材料的成形性且成形回弹小、精度高,可用于生产复杂车身零部件。铝合金板材在生产中由于轧制工艺等原因普遍存在各向异性。各向异性的存在使板材在复杂应力状态下变形路径明显区别于各向同性材料,导致各向同性的本构模型仿真预测的失效极限不可靠。同时,温成形过程会导致成形件几何和材料力学响应的改变,为构件使用性能的准确预测提出了新的挑战。因此,本文开展了各向异性铝合金的温变形和温成形极限的试验和建模研究;通过多种路径的温预应变-室温服役两段加载试验,系统的研究了温成形因素对于铝合金后续服役的影响,并通过建模将温热成形历史因素引入到复杂温热成形构件的性能预测中。对AA5754铝合金的温成形工艺应用和温成形构件性能设计具有重要的意义。本文利用单轴温拉伸试验、0°、45°和90°单轴拉伸试验和温成形极限试验研究了AA5754铝合金在温成形条件下的各向异性温变行行为和温成形极限。结果表明AA5754铝合金板材的成形极限随着温度的升高和应变率的降低而增加;AA5754铝合金表现出厚向异性面内同性,其各向异性特征不会受温度和变形过程影响。基于铝合金温成形过程中的损伤断裂机理,建立了统一的各向异性多轴损伤本构模型。该模型考虑了铝合金的各向异性,将应变、应变速率和成形温度等因素耦合,较好的反映了AA5754铝合金的温变行和失效规律。利用遗传算法确定了本构方程组中的材料常数。通过统计分析和有限元模型验证了所建立的本构模型能够有效地预测AA5754铝合金的各向异性变形流动与温成形极限,指导工业温成形。通过多种路径的温预应变-室温服役两段加载试验研究了AA5754铝合金温预成形时效后,再次加载时的硬化行为和失效行为的演化规律,发现温变形对AA5754铝合金静力学性能的影响显著。预变形后板材出现了时效软化和包申格效应。屈服应力随着预应变的增大而增大,失效应变随着预应变的增加线性降低。成形温度越高,相同预应变条件下板材的屈服强度越低,硬化指数和失效应变越大。AA5754铝合金第二段加载的静力学性能对成形应变率和应力状态不敏感。建立了考虑温成形历史的损伤本构模型,描述温预变形后AA5754铝合金的后继硬化行为和失效行为。该模型能够表征AA5754铝合金在不同温度预变形后出现的时效软化和包申格效应,可以预测复杂应力状态下AA5754铝合金失效断裂,同时还能描述不同温度预成形历史引起的材料延性损失;利用遗传算法和试验结果确定了方程的材料常数。有限元仿真结果表明该本构模型能够有效的考虑温预成形对AA5754铝合金硬化和失效行为的影响,准确的预测AA5754铝合金在复杂应力状态下的变形和失效。基于本文建立的各向异性多轴损伤本构和考虑温成形历史的损伤本构模型进行了成形服役顺序耦合仿真,发现成形因素会引起帽形梁三点弯曲失效形式的改变。厚度减薄会导致失效提早发生,预应变因素会使帽形梁侧壁延性损失,导致失效提早发生的同时,还会引起裂纹沿冲头轴向扩展。成形因素虽然增加了帽形梁59.5%极限抗弯载荷,但是失效位移大幅降低了62.5%,导致帽形梁失效前的吸能降低了42.9%。为温成形构件的性能设计和预测提供了理论指导。
其他文献
海洋生物污损是指海洋中的生物附着在浸入海水的各种表面上,通过聚集生长形成大面积污损生物群落,从而造成水下设施的损害。海洋生物污损会带来一系列的环境和社会问题,比如增加船舶油耗,加速船体腐蚀,造成严重的经济损失,制约了海洋的开发和利用,因此如何防止生物污损成为一个全球性课题。随着人们对防污方法的探索研究,模仿生物防污策略的仿生防污技术以其绿色、广谱、长效的特点,逐渐被全世界研究人员所关注。花环肉质软
一直以来,工程车辆在基础建设、工业生产以及矿山开采等领域扮演着重要角色。然而在节能降耗的大趋势下,工程车辆作为高能耗、高排放装备,其发展正处于技术升级革新的关键阶段。目前,混合动力技术作为实现节能减排的有效方案,已在汽车领域实现应用并趋于成熟,而能量管理则是直接决定混合动力系统性能表现的关键技术。因此开展混合动力工程车辆的能量管理方法研究对促进混合动力工程车辆的发展具有重要的现实意义。本文在综述国
汽车工业历经百年发展逐渐从生产/交通工具向消费品转变,人们也越来越注重汽车行驶过程的运动品质。在纵向运动方面,运动品质通常指汽车的驾驶性,要求汽车速度好控、驾驶感觉符合人的心理期望、不良的运动响应少、驾驶感觉一致性好。良好的驾驶性已成为驱动消费者购买汽车的重要因素。为了保证汽车具有良好的驾驶性,一方面,由于缺乏驾驶性调教的理论依据,汽车厂商广泛通过经验丰富的主观评车师进行大量的实车场地试验标定改善
车辆智能化已经成为现代汽车行业发展的必然趋势,而环境感知技术是实现车辆智能化的基础和关键,其中道路可行驶区域检测是环境感知研究的重点内容,是决定智能车辆自动化水平的核心技术之一。随着深度学习的兴起,深度卷积神经网络在目标识别方面相关研究取得的显著成果直接影响并促进了智能汽车环境感知技术的发展,但由于网络的性能受其空间和时间复杂度的制约,这种矛盾导致现有的深度网络应用于智能车辆时难以同时满足环境感知
在全球能源短缺和环境污染日益严峻的背景下,新能源汽车领域关键技术不断发展,大力推进插电式混合动力汽车的发展是通往全面普及纯电动汽车的必由之路。插电式混合动力系统是一种非线性、多变量且时变的复杂系统,由于其特殊的能量分配结构,对发动机、电机等动力源的控制与传统混合动力系统相比更为复杂,能量管理策略作为混合动力系统的关键技术之一,如何在满足车辆行驶需求和驾驶员动力需求的前提下对各动力源进行优化控制,实
汽车NVH性能是汽车非常重要的性能指标,也是引起车辆各种故障的主要原因。传递路径方法是分析振动噪声问题的很好方法,但是现有传递路径分析方法偏重于试验,较少与数值仿真相结合,且试验周期长,更多用于解决汽车NVH特定具体问题,很少用于汽车NVH的优化和正向开发,同时现有TPA大多从整车系统角度分析NVH问题,较少从各子系统(如激励源特性和柔性连接特性等)角度来进行汽车NVH分析与优化,所以提出能基于子
车辆行驶过程中,驾驶员需要通过视觉获取90~99%的路况信息,清晰的视野是保障驾驶安全性和舒适性的必要条件。降雨工况下,雨水积聚在侧窗和外视镜表面形成水膜、溪流或者水滴,折射和阻挡光线,使驾驶员视野模糊,增加交通隐患。因此,准确预测汽车在风雨环境中行驶时的侧窗水相分布,对水污染程度进行合理的评价;分析不同行驶环境下的变化规律,并开展优化设计以提高视野的清晰度,具有重要意义。然而现阶段汽车空气动力学
随着社会经济水平的提高、人们出行需求的迅速增长,持续上升的汽车数量导致了城市交通拥堵日益严重、能耗攀升、交通事故频发。如何防止交通拥堵、降低耗能、提高车辆行驶安全性是人们日臻重视的重要课题。汽车作为主要交通运载工具肩负着巨大的责任以改善当下交通系统严重的能源耗费、拥堵和安全等问题,因此在技术层面对车辆的生态性进行改进与完善是解决上述问题的重中之重。在此背景下,不断推动汽车安全、节能、高效的智能生态
汽车高速行驶时,风噪是影响舒适性的重要指标,而风噪仿真优化是车型开发前期的必要手段。由于风噪声传播过程复杂,以往基于车窗压力脉动仿真进行了大量的汽车风噪优化工作,而侧窗压力脉动中占主要能量贡献的水动压车窗透过效率远低于声压,导致车窗平均压力脉动难以反映车内乘员人耳风噪感受的正确变化趋势;且由于人耳构造和心理声学的影响,单纯以总声压级为指标不能反映乘员人耳的真实感受,难以应用于风噪优化。因此,本文基
轮胎作为汽车与路面接触的唯一部件,其力学特性直接影响汽车的动力性、操纵稳定性、乘车舒适性、安全性及燃油经济性等性能。汽车轮胎稳态滚动阻力作为轮胎力学特性之一,对汽车的燃油经济性、轮胎使用寿命、驱动制动及汽车操纵性能具有重要的影响,也是轮胎结构设计中的重点研究课题。目前,汽车轮胎稳态滚动阻力的研究主要是以室内台架实验为主,道路实验为辅,其实验方法仍依赖于大型进口实验装置和在标准工况下的分析,而轮胎滚