基于MBD的叶片CMM检测路径规划系统研究与开发

来源 :江苏大学 | 被引量 : 0次 | 上传用户:neversoft
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对目前企业所采用传统的二维图纸与三维数模相结合的产品零件检测模式存在自动化水平不足、检测信息传递过程中易丢失及检测准备周期长等问题,本文将数字化三维模型定义(MBD)技术引入叶片三坐标测量机检测规划中,在UG平台的基础上开发了一套基于MBD的叶片CMM检测路径规划系统。本课题主要工作内容及成果如下:(1)系统总体方案设计。分析基于MBD的叶片CMM检测路径规划系统的技术需求,提出系统总体框架结构与工作流程。基于UG二次开发技术,详细设计了叶片MBD模型构建模块、MBD模型特征识别与PMI信息提取模块、检测信息库管理模块、检测路径规划模块和检测程序输出模块。(2)构建叶片MBD模型。对MBD模型组织结构进行研究分析,确定建立MBD模型所需遵守的标准规范,结合汽轮机叶片结构及其分类,建立叶片MBD模型。(3)MBD模型特征识别与PMI信息提取。采用扩展属性邻接图表达MBD模型的几何及拓扑关系,将典型叶片结构特征以扩展属性邻接矩阵的形式存储至预定义特征库中,提出属性邻接子矩阵匹配算法有效实现叶片结构特征的快速准确识别。(4)检测路径规划。针对叶根叶冠结构的采样策略,讨论了复杂多边形面及圆柱面上测量点数量及其分布的规划方法。针对汽道结构,采用“曲面—曲线—点集”的顺序对其进行分解采样;采用蚁群算法对测量点检测顺序进行优化处理,利用外圆避障与扩展包围盒避障两种避障方式进行碰撞规避,并结合Vericut进行路径仿真,最后将无干涉最优路径输出为DMIS格式程序指导CMM进行检测。(5)系统实例验证。选取企业某一动叶片检测规划为例,展示并详细讲解了基于MBD的叶片CMM检测路径规划系统各模块操作全过程,并结合实验验证了系统的可行性和准确性。本原型系统为保证数据源传递过程中的唯一性并实现无纸化叶片检测模式提供一种新途径,能够有效提高三坐标检测人员在叶片检测规划过程中的工作效率,帮助企业加快实现叶片生产及检测项目的数字化,对企业提高竞争力具有重要意义。
其他文献
碳排放交易是为应对全球变暖而采取市场手段的减排机制。由于能源价格和碳价格以复杂的方式相互影响,分析碳市场和能源市场的相关性可以为两个市场的参与者提供有价值的信息与建议,因此研究二者之间的关系尤为重要。熵是系统复杂性的度量,本文使用多尺度样本熵、交叉样本熵、模糊熵和传递熵,研究了碳市场和能源市场的复杂性、同步性、相关性及因果关系。鉴于我国的能源结构是以煤炭为主导的,因此本文以中国试点碳市场和煤炭市场
热障涂层广泛应用于航空发动机高温热端部件,以提高部件的使用温度,从而延长发动机的服役寿命。目前,传统热障涂层材料8YSZ(8 wt.%Yttria-stabilized Zirconia)已远远不能满足航空发动机更高推重比的要求,因此研发新型热障涂层材料迫在眉睫。与8YSZ相比,锆酸钆(Gd2Zr2O7,GZ)和钽酸钆(Gd Ta O4,GT)具有更低的热导率、更好的高温相稳定性和抗高温烧烧结能力
碳纤维增强复合材料(CFRP)强度高、自重轻且耐腐蚀,可将其应用于大跨空间结构、斜拉索梁桥等结构体系,以解决传统的预应力钢筋腐蚀以及承载效率过低等问题,在土木工程中应用广泛。作为预应力拉索的基本构件,其锚固系统的性能至关重要。目前CFRP筋常采用的锚固型式有粘结式锚具、机械夹持式锚具和粘结-夹持复合式锚具等。其中,粘结型锚具因其锚固效率高、对筋材的损伤低等无可比拟的优势,在工程中应用最为广泛。由于
酶电化学生物传感器是一种应用广泛的生物传感器,通过固定不同的酶分子可以实现对葡萄糖、乳酸、过氧化氢等各种指标的检测。其中影响酶电化学生物传感器性能的一个重要因素是电极的修饰过程。纳米材料由于良好的特性被广泛用于对酶电极进行修饰,以提高酶的活性以及实现传感器的信号增强。目前常用于电极修饰的材料有金属和金属氧化物纳米材料、碳纳米材料、介质纳米材料和聚合物纳米材料等。随着对酶电化学生物传感器相关研究的不
本文以Ti-5322钛合金为研究对象,借助Gleeble-3500热模拟实验机对Ti-5322钛合金进行热压缩变形。研究分析该合金在变形温度(900~1050℃)、变形速率(0.01~1s-1)以及最大应变量为60%变形条件下的热变形过程。利用光学显微镜(OM)和扫描电镜(SEM)来探究在热模拟过程中高温组织的演变规律,揭示动态再结晶的形核方式,为Ti-5322钛合金的β单相区变形工艺的优化提供理
随着能源短缺和环境污染问题的日益严重,电动汽车的研究引起了社会的广泛关注,采用轮毂电机直接驱动(轮毂直驱)系统的电动汽车,具有控制灵活、传动效率高、结构紧凑等优点,被认为是未来电动汽车的理想构型。轮毂直驱与悬架系统是由车轮、轮毂电机和悬架系统组成的复杂机电耦合系统。然而,将轮毂电机集成至车轮会增加非簧载质量,同时车辆在不平整路面产生的轮毂电机偏心会诱发轮毂电机不平衡电磁力,传递到车轮和车身,导致汽
SiC颗粒增强铝基复合材料兼具密度低、热膨胀系数低、比强度高、耐磨和耐蚀性好等优点,在船舶、航空航天以及汽车制造等领域都有着极其广阔的应用前景。但是由于SiC和Al基体间的物理和化学性能差异较大,SiC/Al材料的焊接存在一定难度,尤其是熔化焊时,焊缝中会发生界面反应,生成针状脆性相Al4C3,造成接头力学性能严重下降,制约SiC/Al材料进一步应用和发展。本文分别采用脉冲和连续两种激光波形,以1
碳排放交易系统在国际上已经引起极大关注,中国作为责任大国,肩负着缓解全球气候变化的重任。大幅度减少温室气体是大势所趋,碳市场中的控排企业作为能源消耗和温室气体排放的重要来源,其碳排放的管理与制约将决定是否能实现碳减排目标。本文以中国碳排放试点中的控排企业为研究对象,通过划分三个时间段研究碳排放交易系统对控排企业的影响。首先,使用相关系数阈值法构建控排企业股票联动网络,分析网络度,平均路径,介数等网
海工高性能混凝土在杭州湾跨海大桥、胶州湾大桥、港珠澳大桥等特大型桥梁中都有一定应用,但总体来说其实际应用时间还相对较短,对其在各种损伤作用下长期性能退化规律的研究还不够全面。此外,冻融循环和氯盐侵蚀作用已是影响沿海混凝土结构耐久性的突出问题,亟待解决。鉴于此,本文在国家自然科学基金项目(51878319)的资助下,从材料和构件两个层次,分别开展了冻融、氯盐作用下海工高性能混凝土的性能退化和海工高性
复合轧辊成功的关键在于复合界面的结合状况。本论文采用电渣结晶器快速冷却凝固Fe-Cr-B合金熔体与电磁感应加热45#钢辊芯相结合的液-固复合铸造的方法制备了Fe-Cr-B合金/45#钢复合轧辊,着重研究了工艺参数:复合比(FeCr-B合金包覆层的厚度与45#钢辊芯直径之比)、辊芯预热温度、Fe-Cr-B合金熔体的浇注温度和合金熔体浇铸后电磁感应加热保温时间的变化对于复合轧辊的结合状况及复合界面显微