基于人工核苷酸的乳腺癌核酸适配体筛选及其应用研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:duncan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
乳腺癌是最常见的一种癌症,也是女性癌症死亡的主要原因。乳腺癌死亡的大部分不是由于原发肿瘤本身,而是转移到身体其他器官的结果。在肿瘤转移过程中,一些关键蛋白通过与其相应受体蛋白的相互作用,来促进肿瘤细胞从癌组织中脱落,游离的肿瘤细胞到达继发部位后,又能增强肿瘤细胞与宿主细胞的结合。蛋白相互作用抑制剂是一种能特异性结合蛋白口袋的化合物,它可以通过封闭关键蛋白与受体蛋白的作用位点,抑制蛋白质-蛋白质相互作用,从而阻断关键蛋白与受体结合。如果能够找到与肿瘤转移密切相关的蛋白的抑制剂,就有望抑制乳腺癌的转移,这对于提高乳腺癌的治愈率具有非常重要的意义。
  核酸适配体是一种能够与靶标分子高特异性识别、结合的单链DNA/RNA序列。核酸适配体作为一种人工合成的核酸,在与靶标蛋白结合时,会折叠成众多高级结构。通过高级结构间的相互作用与靶标蛋白特异性识别,可以进一步封闭靶标蛋白的活性位点从而抑制靶标蛋白的活性功能。已有研究报道,对蛋白具有特异性识别的核酸适配体可以作为一种很好的蛋白质抑制剂。开发肿瘤转移相关蛋白的核酸类抑制剂,可以有效的抑制肿瘤的转移。在此基础上开发了一种通用的方法来对核酸库的化学空间进行模块化扩展,来产生具有蛋白质活性调节的适配体。主要研究内容如下:
  (1)为了获得特异性识别三阴性乳腺癌的核酸适配体,我们合成了三种类型的人工核苷酸,分别是含Fe碱基、F碱基以及Z∶P碱基对的人工碱基文库。然后,我们以高转移性恶性乳腺癌细胞系MDA-MB-231为靶细胞,以低转移性的人乳腺癌细胞MCF-7为对照细胞,利用cell-SELEX对三种化学修饰的文库进行筛选。经过12轮的筛选,发现含有Z∶P碱基对核酸文库达到最大富集。随后对Z∶P碱基对核酸文库残余DNA进行高通量测序,确定了MDA-MB-231细胞的核酸适体为ZAP-1。为了进一步考察所合成的核酸适体,我们进一步测量了拉曼光谱和质谱,结果表明Z和P碱基成功引入到了ZAP-1上。随后,我们利用流式细胞术分析了适体ZAP-1和MDA-MB-231的特异型性结合能力,结果发现ZAP-1能特异性结合靶细胞MDA-MB-231,而不结合对照细胞MCF-7,结合人乳腺癌细胞MDA-MB-231的解离常数是49.5nM。
  (2)为了找到ZAP-1靶向MDA-MB-231的具体蛋白,我们利用SDS-PAGE、液质连用技术、核酸适配体pull-down、蛋白质印迹和siRNA干扰等实验鉴定和验证了靶标蛋白ITGA3。整合素α3β1能够与细胞粘附蛋白层黏连蛋白10(LN10,Kd=7.9nM)发生很强的连接,从而促进癌细胞转移。为了探究ZAP-1抑制整合素的配体连接活性,我们用流式细胞分析和共聚焦显微技术探究了ZAP-1和LN10的竞争性连接能力,发现核酸适配体ZAP-1抑制整合素α3β1的配体连接活性。利用核酸适配体与其靶标蛋白整合素α3β1特异性结合的特性,我们进一步发现ZAP-1通过结合α3β1形成一个稳定的低亲和力构象可以抑制α3β1的亲和力,来抑制α3β1介导的MDA-MB-231细胞的粘附和迁移,ZAP-1有望作为三阴性乳腺癌转移的抑制剂。
  总之,这种化学设计辅助的体外选择方法能够生成功能性核酸,为合理设计新型蛋白质抑制剂药物揭示新的基础。
其他文献
【摘 要】 授之以渔的理性的爱,更能让学生学会做人,学会生活、学会学习。他是一把金钥匙,开启成功的大门。本文就学生的自主化管理做了相关探讨。  【关键词】 关爱;自主化管理;尝试;探讨  【中图分类号】G63.2【文献标识码】A【文章编号】2095-3089(2016)15-0-01  在班级内施行学生自主化管理。这种模式是以学生的自我约束为基础,自我管理为手段,自我评价为途径,自我发展为目的,是
期刊
Fe3O4磁性纳米粒子作为典型的磁性纳米材料,具有超顺磁性和大的饱和磁化强度等优点。将Fe3O4纳米粒子进行功能化修饰并自组装成一维、二维结构,可以得到新的物理化学性质,因而日益受到人们关注。然而,利用较为简单的自组装方法获得稳定的大尺寸一维Fe3O4磁性纳米链结构目前研究还较少,其应用范围更亟待拓展。因此,本文首先合成了较大尺寸的Fe3O4@SiO2一维纳米链,再对其进行不同的功能化修饰。在此基础上,分别探索了一维纳米链在重金属离子去除和流动注射化学发光分析中的应用。研究结果表明,大尺寸一维Fe3O4磁
近年来,近红外等离子体材料在生物光热治疗(PTT)应用方面受到广泛关注。众所周知,光介导诊疗技术的有效实施,离不开在近红外波段有良好吸收性能的等离子体光敏剂。随着研究的不断深入,大家逐渐发现很多近红外等离子体材料因为各种原因如成本高、合成步骤繁琐、生物毒性较大等难以进行实际应用。基于以上论文主要包括以下四部分内容:
  第一章为绪论,首先对近些年来研究的近红外等离子体材料在肿瘤治疗中的优点和缺点进行了总结及概括,并指出了当前迫切需要解决的问题,从而提出本文进行研究的工作。
  第二章超小Cys
电解水工业制氢包括析氧反应(OER)和析氢反应(HER)两种半反应,需要高效、经济的电催化剂。过渡金属亚磷酸盐M11(HPO3)8(OH)6(M=Ni,Co等)拥有三角形和六角形通道的三维八面体阵列结构,其独特的微孔通道有利于将活性位点暴露在电解质中,提高界面电荷转移速度。通过引入杂原子调节催化剂组成,可以调节活性位点和局部电子环境,有望提升过渡金属亚磷酸盐纳米材料的电催化性能。本论文旨在通过化学液相法合成金属修饰的亚磷酸盐纳米材料催化剂,利用结构诱导提高电催化OER、HER及全水裂解性能。本论文主要合成
突触传递过程是生物机体内一种非常重要的生理过程。实时监测突触传递过程并阐明其中的生物学机制对许多神经性疾病的诊疗大有裨益。在突触传递的过程中,突触小泡先是与突触前膜融合,然后迅速释放神经递质,然后立即恢复成未与突触前膜融合的状态以维持持续的神经元活动。在这个过程中,突触小泡的内部管腔的pH值首先由pH7.4变为pH5.6再变为pH7.4。因此,人们可通过实时监测突触小泡在神经信号传导过程中的内部管腔pH的变化达到实时监测突触传递这一重要生理过程的目的。基于此,人们开发了一系列标记突触小泡且对环境pH变化敏
【中图分类号】G63.20【文献标识码】A【文章编号】2095-3089(2016)15-0-02  如何大面积提高英语教学质量是长期以来困扰着英语教学工作者一道难题。现代教育理论认为,影响学生学习的因素具有多样性,但概括起来,主要有以下三个方面:一是非智力因素,包括动机、兴趣、意志、情感及学生的个性特征等;二是智力因素,包括观察力、记忆力、思维能力等;三是控制因素,包括教师的讲授、指导等。这三个
期刊
革兰氏阴性病原体对许多抗生素具有耐药性,其不断增长的耐药性正严重危害着人类健康。一直以来,潘他米丁是一个很好的再利用药物,它可以用于药物组合。潘他米丁最初是一种抗疟疾和抗真菌的药物,目前已有研究报道潘他米丁能够敏化FDA批准的抗生素,如利福平、新生霉素和红霉素,从而赋予它们对抗多种革兰氏阴性病原体的能力,如大肠杆菌、鲍曼不动杆菌和肺炎克雷伯菌。据报道,这种致敏机制是由于潘他米丁与脂多糖(LPS)的结合,导致革兰氏阴性菌外膜透化,从而增加了抗生素在细胞内的浓度。在这项研究中,实验证明潘他米丁(本身是一种再利
氢气(H2)作为一种环境友好的可持续能源,由于其无碳排放和高能量密度,被认为是替代枯竭的化石燃料的最佳选择。电催化水分解包括阴极析氢反应(HER)和阳极析氧反应(OER),是理想的获得H2的环境友好型技术。开发低成本、高效的HER和OER的电催化剂是一项有吸引力但具备挑战性的工作。过渡金属镍基化合物由于其丰富的地球资源和易于调整的电子结构,已被证明是有前途的电催化剂。本论文的目的是通过化学液相方法制备金属(Fe、Co或Pt)修饰的过渡金属Ni基硫(氢氧)化物纳米片结构,得到过电位小、Tafel斜率低、稳定
RNA是生物学活动中不可或缺的一环,是一种具有高度复杂性的生物分子。由于RNA本身结构特点,使得RNA技术在应用上的瓶颈很难突破,且目前还有很多种类的RNA的主要生物学功能还无法确定。RNA的活性调控可以在这些问题上给予一些推动作用。我们用化学修饰的方法对RNA结构做出一些改变,从而在时间和空间上对RNA进行活性控制,即做到有的放矢,达到事半功倍的效果。RNA活性调控这个工具可以让人们更好更清晰地看到RNA在各种环境中扮演的不同的角色,也可以大大地推进RNA在生命科学、医药等方面的应用。本论文的具体研究内
二维(2D)纳米片材料(NS)由于其特殊的性质,如高比表面积、孔径小、吸附性能好、光电性能优越,已被广泛应用于各种领域,如吸附和净化、光催化、电化学、微电子和陶瓷等。表面辅助激光解吸离子化飞行时间质谱(SALDI-TOF MS)作为一种简单、快速、灵敏的分析检测技术在蛋白质组学研究、生态环境健康和食品安全等领域中起到了非常重要的作用。多氟化合物(PFCs)由于其独特的理化性质被广泛应用于各种消费品的生产中,但由于某些多氟化合物(例如全氟磺酸盐PFOS等)的生物累积性和环境持久性,对人类的身体健康和生活环境