基于粗糙集与改进遗传算法的因果图结构学习

来源 :重庆师范大学 | 被引量 : 0次 | 上传用户:wintertear0704
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
因果图理论在不确定性推理,故障诊断等方面成为了一个成熟、重要的方法,并且在实际案例中得到了很好的应用。但随着网络节点的增加,直接给出准确的网络结构变得十分困难,并且从大型复杂系统中观察得到的数据常常含有许多冗余无用的信息,若利用原始的变量集构建因果图网络,最终得到的模型结构复杂,推理难度大。而现有的结构学习算法易陷入局部最优,随着变量节点个数的增加,算法复杂度成指数级增长导致搜索困难,效率低下。因此,对于大型复杂网络进行约简,设计出能有效降低搜索难度、提高搜索效率的因果图结构学习方法是非常有必要的。本文首先针对高维数据的因果图网络结构复杂、学习规模大、计算推理效率低下的问题提出利用粗糙集的属性约简对原始的数据集进行约简,根据约简后得到的最简变量集来构建网络结构和推理诊断。这样有效地降低了网络结构的复杂度,提高了推理诊断的效率。然后针对现有的结构学习方法搜索困难,学习效率偏低的问题,提出一种改进的遗传算法。利用粗糙集理论中的属性依赖度,构造出一个十分接近真实网络的候选网络结构,以候选网络为基础生成初始种群,再利用遗传算法搜索得到最优的因果图网络结构,很好的解决了启发式易陷入局部最优的问题,降低了搜索空间,提升了算法的效率。数据实验表明,该算法不需要假设节点顺序,能以较短的时间获得较优的因果图网络结构,无论是从学习效果还是运行效率方面,都优于传统的遗传算法。最后,将粗糙集的属性约简与改进遗传算法结合起来作为因果图网络结构学习的方法,通过实例数据,利用该方法学习得出因果图网络结构,并以此为基础学习网络参数,对其进行推理诊断。实验结果表明,本文方法简化了模型的复杂程度、提高了学习的效率并保证了结果的准确性。
其他文献
对数域类群结构和类数的研究以理想的理论和方法为基本特征,研究结果在数域论中发挥着重要作用.类数是数域K的重要不变量,可视为OK与主理想整环差距的度量,能够反映元素在唯一分解法则下的稳定程度,而类群可视为对由数扩张到理想这一过程的度量.三次数域是代数数论中非常重要的研究对象,对其类数和基本单位的研究都是代数数论的中心课题,本文对一些特殊三次域的类群结构和类数,以及基本单位上界的估计进行了研究.对于非
众所周知,共轭梯度法由于其结构简单、存储量小等特点,在工程问题、金融模型等许多实际领域中得到了广泛的应用.然而,对共轭梯度法的研究仍存在一些具有挑战的问题,如所有共轭梯度方法的下降性、非凸函数的全局收敛性、Dai-Liao型共轭参数的最优选取等.因此研究共轭梯度法的理论性质和数值结果具有重要的理论意义和实际应用价值.共轭梯度法的共轭条件、充分下降性和极小化条件数是加速实际计算的三个重要因素.因此,
有限记忆BFGS(broyden-fletcher-goldfarb-shanno)方法主要用来求解大规模无约束优化问题,是最有效的拟牛顿方法之一,该方法利用存储一定量的向量对去克服拟牛顿方法需要存储大量矩阵的缺点,同时还保持了良好的收敛性质.本文从目标函数的曲率信息、方法的全局收敛性和计算效率角度来考虑,结合初始调比方法和割线条件的特点,基于Barzilai-Bowein步长因子、对角预处理子和
利用一组相互作用多肽对SpyTag/SpyCatcher之间的特异相互作用,以麦芽寡糖基海藻糖合酶(MTSase)和麦芽寡糖基海藻糖水解酶(MTHase)为作用酶研究其固定化的应用效果。将SpyCatcher与具有高亲和力的纤维素结合模块(CBM)融合,得到融合蛋白SC-CBM,利用CBM与纤维素之间的吸附作用将融合蛋白固定于纤维微球,形成稳定且通用的固定化载体,实现了79.8%的载体回收率。作用
本文通过研究固定化青霉素酰化酶的酶活力,考察了固定化酶反应条件即缓冲溶液浓度、pH值、酶浓度以及反应时间等对固定化酶活力的影响。研究了反应条件与固定化酶活性之间的影响规律,从而为进一步优化固定化酶条件、提高固定化酶活性提供了实验依据与参考。
Stokes问题在流体力学中具有广泛的应用,非线性的Stokes问题通常转化为变分形式进行研究。本文主要研究具有非线性滑动边界条件的Stokes问题,利用交替方向乘子法求其解,并对该算法进行改进,得到自动选取罚参数的自适应交替方向乘子法。在二维情形下,利用变分法将非线性滑动边界条件下的Stokes问题等价转化为变分等式问题。在边界上引入一个辅助变量,导出变分等式问题的增广Lagrangian函数,
Lambert级数广泛应用于解析数论,超几何级数,组合数学,椭圆函数,theta函数的研究中.本文首先使用有理函数的部分分式分解定理和计算残数的方法,给出了三个单边广义Lambert级数恒等式,这些恒等式可以看作Andrews,Lewis,Liu的结果的推广.然后作为应用,从这三个恒等式我们得到了相应的不同于Andrews等人的单边Lambert级数恒等式.
由于《义务教育数学课程标准(2011年版)》把“模型思想”纳入到十大“核心概念”中,中小学愈发重视学生模型思想的培育。本文以北师版八年级上册教材为例深入研究如何设计教学设计,才能把模型思想更好地渗透到中学数学课堂教学中,全面提升学生对于数学知识的应用能力。文章首先采用文献分析法,搜集并整理了国内研究学者对于模型思想在初中数学中的相关研究情况,探讨了模型思想渗透到中学数学课堂教学中的必要性。其次,通
贝叶斯网络(Bayesian Network,BN)是用图形化的方式来表示变量之间的概率不确定性,是处理不确定性问题的一种重要模型。贝叶斯网络广泛应用于财务分析、医疗诊断、机器学习等领域,并取得了巨大的成功。朴素贝叶斯网络作为一种有约束性的贝叶斯网络,其具有结构简单,运行效率高等特点,在风险分析和分类等领域有着较广泛的应用,由于其强烈的条件独立性假设在现实世界中很难实现。因此,如何对条件独立性假设
自然科学和工程中许多非牛顿力学的问题都可以归结为求解时间分数阶偏微分方程模型的问题来加以研究,这些复杂问题的数学模型具有深刻的物理背景和丰富的理论内涵,在物理学、化学、生物学和经济学等众多学科中有着非常广泛的应用。发展这些分数阶偏微分方程的求解方法以及寻找它们的精确解并解释它们的动力学现象显得十分重要。在此背景下,本文就利用经典的变量分离方法与Mittag-Leffler函数的性质相结合的方式,研