论文部分内容阅读
3-李代数是一门应用性很强的数学分支,尤其是度量3-李代数广泛地应用在数学物理的许多领域中。本文从度量3-李代数出发,对度量3-李代数的辛结构进行了研究。主要工作分为三个部分: (i)对3-李代数的辛结构进行了讨论,证明了一个度量3-李代数(A,B)为度量辛3-李代数的充分必要条件是存在可逆的导子D使得D∈Ders(A),并给出了由任意的3-李代数L可以构造辛3-李代数的方法; (ii)给出了T*θ-扩张的辛结构,并得到了幂零度量3-李代数存在辛结构的充要条件。得到了任一度量辛3-李代数(A,B,句为另一3-李代数的T*θ-扩张; (iii)研究了度量3-代数由特殊导子的双扩张,并对其辛结构进行了讨论。