论文部分内容阅读
Banach格和算子论作为一门基础学科在控制科学与工程领域发挥巨大作用,尤其是控制学科与社会经济学相融后在经济风险控制领域有突出影响。近些年,无界收敛性是Banach格和算子论的新兴课题,而将无界收敛性应用到风险控制中的一致风险测度和凸风险测度的共轭表示中解决了风险控制中的重大遗留问题,因此成为了研究的热点。本文主要研究向量格上的无界序收敛和无界范数收敛以及相关算子的性质。研究结果可以推动无界收敛性在风险控制中的应用,同时完善Banach格和算子论,具有重要的理论意义和潜在的应用价值。本文属于Banach格和算子论的理论研究,主要讨论无界序柯西网和无界序完备空间的判定、向量格上无界范数收敛以及无界范数拓扑的性质、无界绝对弱Dunford-Pettis算子的性质以及几乎L-弱紧和几乎M-弱紧算子与半紧算子之间的关系。主要研究内容如下。首先得到了关于无界序收敛的一些新性质,这些性质将无界序收敛的一些结论衔接起来。特别地,证明了在序连续的Banach格中每一个范数有界正的单调递增的网是uo-柯西的,并且在序连续的Banach格中每一个uo-柯西网在该Banach格的普遍完备化中有uo-极限。其次,利用赋范子格上的无界范数拓扑提出了向量格上的无界范数收敛和无界范数拓扑的概念并且将赋范格上的无界范数收敛和无界范数拓扑中的经典结论延伸到这一新的设定。考虑了当向量格是赋范子格的普遍完备化时的特殊情况。证明了当向量格是所有可测函数构成的空间,赋范子格是它中的序连续的Banach函数构成的空间时,向量格上的无界范数收敛与依测度收敛等价。并且得到若赋范子格是离散的并且序完备的,向量格是定义在极大不交原子组上的泛函时,向量格上的无界范数收敛与逐点收敛等价。并探讨了向量格上的无界范数收敛与无界序收敛之间的等价关系,将经典的函数空间的结论推广到向量格上。之后,给出了每一个Dunford-Pettis算子是无界绝对弱Dunford-Pettis(简记为uawDunford-Pettis)以及反过来时的Banach格的刻画。特别地,证明了每一个值域空间非零的Dunford-Pettis算子(或紧算子)是uaw-Dunford-Pettis当且仅当定义域空间的共轭是序连续的Banach格。同时,研究了关于无界绝对弱Dunford-Pettis算子的空间刻画,得到每一个从Banach格到可求和的序列空间的正算子是uaw-Dunford-Pettis当且仅当该Banach格的共轭空间是序连续的。并讨论了uaw-Dunford-Pettis算子和弱Dunford-Pettis之间的关系。最后,研究了半紧算子是几乎L-弱紧(或几乎M-弱紧)的充分必要条件以及反过来的情形。特别地,证明了每一个定义域空间非零的半紧算子是几乎L-弱紧的当且仅当值域空间是序连续的Banach格。同时,得到了每一个正的半紧算子是几乎M-弱紧的当且仅当定义域空间的共轭是序连续的Banach格。并探讨了几乎L-弱紧算子和Dunford-Pettis(或几乎Dunford-Pettis)算子之间的关系。