注入锁定耦合式CMOS太赫兹压控振荡器的设计

来源 :东南大学 | 被引量 : 0次 | 上传用户:youlishi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
太赫兹波在宽带、传播、穿透等方面的独特性质使其在宽带通信、医学成像、雷达、频谱分析、无损检测以及安全检查等领域具有广泛的应用前景。太赫兹振荡源作为太赫兹通信系统中必不可少的模块,已成为当下的研究热点之一。随着电路工作频率的提高,晶体管增益下降,无源器件品质因数降低,互连线寄生效应明显,以上诸多因素给太赫兹电路的设计带来了巨大挑战。本文针对太赫兹宽带通信系统中的振荡源进行研究,基于40nm CMOS工艺设计了一款注入锁定耦合式太赫兹压控振荡器。本文完成了注入锁定耦合式太赫兹压控振荡器的电路设计、版图设计、路场联合仿真,并给出了芯片测试方案。本文设计的电路由四个核心振荡器和四个移相器构成,通过控制核心振荡器之间的耦合来调谐输出频率。核心振荡器采用交叉耦合结构,移相器采用带谐振腔的级联放大器结构,将移相器的相移范围控制在0~π之间,使核心振荡器工作在90°模式下,能有效的将核心振荡器的四次谐波合成到输出端,提高四次谐波输出功率。在版图布局中,考虑了晶体管叉指电极金属和互连线金属的电流容量,计算了晶体管端口寄生电阻对电路的影响,完成了电路中所有的传输线和互连线的EM仿真。路场联合仿真结果显示,在0.9V电源电压下,控制电压VC=0.9V时,核心振荡器工作在90°模式,瞬态输出四次谐波信号摆幅为252m V。在0.9V电源电压下,VC从0到1.8V变化,输出信号频率范围为294.9GHz~304GHz,实现了3%的调谐范围,输出功率为-3.9d Bm,相位噪声为-87.9d Bc/Hz@1MHz。本论文基于CMOS工艺实现了太赫兹压控振荡器,满足系统的指标要求,为太赫兹宽带通信系统的发展奠定了重要基础。
其他文献
近年来,随着人们对无线产品的需求不断增长,能够覆盖多种无线通信频段的宽带通信系统已经成为当前研究的热点。接收机射频前端电路作为无线通信系统的关键模块,也必须要满足宽带的需求,射频前端电路的性能将直接影响整个接收机的整体性能,所以宽带接收机射频前端电路的研究具有广阔的应用前景。本文基于40nm CMOS工艺,设计了一款工作频率为0.2~2.5GHz的宽带接收机射频前端电路,主要由低噪声放大器(LNA
过去几年中,随着消费者对无线产品的需求增加,无线局域网(Wireless Local Area Networks,WLAN)技术逐渐走向成熟。为了实现较高的数据传输速率,无线局域网采用了正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术进行信号调制,该技术具有非常高的峰均比。因此,功率放大器(Power Amplifier,PA)作为
随着现代科学技术和信息处理技术的蓬勃发展,光电探测作为一门研究光电转换的新兴技术,因测量精度高、速度快、非接触、响应频带宽、信息容量大等特点,已成为现代信息科学的重要分支,广泛应用于制造业、植业、林业、交通运输业、通讯产业、公共服务业等。光电探测系统中的核心光电转换器件为探测器,光电流中包含的相关信息需要后续接口电路和读出电路(Readout Circuit,ROIC)进行相关处理和分析,最终转换
压控振荡器(Voltage Controlled Oscillator,VCO)是无线通讯系统中产生本振信号的核心模块。它与高速二分频器配合,可以产生正交差分信号。在无线局域网(Wireless Local Area Network,WLAN)应用中,802.11b具有避免网络冲突发生和大幅度提高网络效率等优点。因此,本文设计的应用于WLAN802.11b的压控振荡器及高速二分频器具有良好的工程背
基于雪崩光电二极管(Avalanche Photodiode,APD)的单光子探测技术,因其具备超高灵敏度的光电检测性能,已广泛应用到量子通信、激光测距等众多领域之中。当前,基于宽门控工作模式的APD探测电路可检测出随机到达的光子,但这种工作模式存在暗计数大、淬灭结构复杂等不足。基于GHz门控固定淬灭的单光子探测技术,不仅可有效解决上述问题,还可检测出按预知时序到达门控曝光窗口内的光子,奠定了在量
物联网(Internet of Things,IoT)是能够让不同物体实现相互联系的通信网络,由于IoT应用需要大量传感器节点,锁相环频率综合器作本振的射频收发机是IoT传感器节点的核心部分,需要降低功耗、减小面积。论文的研究目的是,通过设计功耗低、空闲音少的小数分频器来提高应用于IoT的频率综合器性能。论文首先综述了小数分频器的研究背景以及小数分频器设计面临的问题,然后介绍了小数分频器各个模块的
随着功率集成技术的不断发展,横向双扩散金属氧化物半导体场效应管(Lateral Double-diffused Metal Oxide Semiconductor,LDMOS)因其具备高击穿电压、大驱动电流等优势,已在功率集成电路中普遍使用。然而,随着功率集成电路对器件性能的要求越来越高,传统体硅LDMOS器件受限于硅材料的理论极限,器件的特征导通电阻难以进一步降低。绝缘体上硅(Silicon O
射频功率放大器的能耗占据整个射频前端能耗的主要部分,其效率对整个前端系统的效率影响巨大,同时高带宽利用率的调制方式对功率放大器的线性度提出了越来越高的要求,采用低成本工艺设计出高效率、高线性度的射频功率放大器越来越具挑战性。SOI工艺的衬底损耗小,噪声窜扰小,器件之间的隔离性能好,且无闩锁效应,在射频集成方面具有潜力并且具有成本优势,因此在射频功率放大器方面的应用具有研究价值。本文基于0.28μm
绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)具有低导通压降、高载流子密度、高输入阻抗和宽安全工作区等优点,常应用于大功率电路系统中。超结型绝缘栅双极型晶体管(Super-Junction Insulated Gate Bipolar Transistor,SJ-IGBT)的提出,进一步改善了IGBT器件导通压降与关断损耗的矛盾关系,是未来IGB
本文介绍了以JESD204B数据接口为核心的高性能ADC电路的信号完整性分析设计。模块处理核心采用Xilinx的XC7VX690T,设计中包含五片ADC,单通道最大支持10Gbps的信号传输速率。本文首先对信号完整性的相关原理进行了阐述和分析,建立了本次设计中主要涉及理论的包络,简要介绍了相关理论对应设计的影响模型。随后,对高性能ADC电路系统设计从射频区域和数字区域的架构及设计内容进行了介绍。在