基于GHz门控的单光子差分探测电路设计

来源 :东南大学 | 被引量 : 0次 | 上传用户:shaoyan_8
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于雪崩光电二极管(Avalanche Photodiode,APD)的单光子探测技术,因其具备超高灵敏度的光电检测性能,已广泛应用到量子通信、激光测距等众多领域之中。当前,基于宽门控工作模式的APD探测电路可检测出随机到达的光子,但这种工作模式存在暗计数大、淬灭结构复杂等不足。基于GHz门控固定淬灭的单光子探测技术,不仅可有效解决上述问题,还可检测出按预知时序到达门控曝光窗口内的光子,奠定了在量子通信应用中的重要基础。由于APD存在寄生结电容,当门控信号耦合至APD的阴极时,其跳变沿均会通过APD产生较大的尖峰噪声信号。该尖峰噪声会与雪崩信号产生不同程度的混叠,显著增加了雪崩信号从尖峰噪声中有效提取出来的难度。本文首先对探测器和尖峰噪声进行了建模分析,掌握了雪崩信号的特性以及影响门控尖峰噪声的关键因素,确定了差分共模抑制的检测方法,即构造双APD主辅两路感应支路,仅主支路APD可正常感光,利用低噪声放大器LNA将两路尖峰噪声作为共模信号进行抑制,若有触发的雪崩信号,可作为差分信号完成放大,触发后续比较器输出状态翻转,实现单光子探测。LNA采用跨导倍增型CG结构,在较小的功耗条件下,实现输入阻抗匹配与电压增益的要求;比较器则采用预放大结合动态锁存的结构,以满足响应探测电路高速检测的需求。在Cadence软件平台下,采用TSMC 0.18μm CMOS标准工艺完成了基于GHz门控的单光子差分探测电路设计。测试结果表明,探测器与门控尖峰噪声的模型基本正确;在理想的激励条件下,探测电路功能正确,但性能相比仿真结果有所退化,LNA的电压增益为17.9d B,比较器的传输延时为3.2ns,分辨率为173.8m V,系统传输延时为5ns;在加载APD的测试条件下,电路噪声容限为155m V。针对GHz窄门控测试条件受限,分别采用信号外部注入叠加与APD暗计数等效代替雪崩信号的方法进行测试,在尖峰噪声匹配的差分检测条件下,电路具备GHz门控检测能力。最后分析了测试结果退化的原因并给出了可行的改进方案。
其他文献
有机电致发光二极管(OLEDs)因其体轻质薄、可弯曲折叠、自主发光、视角广、色彩鲜艳、对比度高等多方面的优点,逐渐走进大众视野并实现了商业化。热活化延迟荧光(TADF)材料作为第三代明星有机电致发光材料,近年来已引起广大科研工作者的极大兴趣,它能够将三线态激子通过上转换形成可辐射发光的单线态激子,从而实现100%的内量子效率。在TADF器件中,为了避免寿命较长的三线态激子带来的一系列副作用,实现更
有机发光二极管(OLEDs)由于具有视角范围宽、响应时间短、自发光、成本能耗低以及可实现柔性制备等优点,引起科研工作者的广泛关注。几十年来,有机发光二极管发展迅速,已经被广泛应用于大面积全彩显示器和柔性显示器中。发光材料的选择是决定OLEDs器件性能的关键,迄今经历了从传统荧光材料到磷光材料再到热活化延迟荧光材料(TADF)的跨越。传统荧光材料是第一代发光材料,由于三线态激子的自旋禁阻,理论激子利
1200V横向双扩散金属氧化物半导体场效应管(Lateral Double-Diffused Metal Oxide Semiconductor,LDMOS)可应用于高压电机驱动和高压AC-DC转换器等领域。碳化硅(SiC)凭借其优良的物理、化学和热特性,成为制备功率器件的理想材料。用碳化硅制备LDMOS器件的优势在于击穿电压高、导通电阻极低、开关速度快、热稳定性好及芯片面积小,可替代高压工作领域
快速离化器件(Fast Ionization Device,FID)是基于离化波理论设计的一种全固态开关器件,可以在亚纳秒内迅速导通,广泛应用于脉冲源系统中。目前,国内关于快速离化器件的研究还处在硅基、低电压、低脉冲电流阶段。近年来,由于碳化硅材料本身的优良特性使其广泛应用于功率半导体器件领域,这也使得基于碳化硅材料的高功率快速离化器件的研制成为可能。本文旨在设计一款碳化硅高功率快速离化器件。本文
传统微流控芯片的制造工艺和设计方法从很多方面限制了微流控芯片的发展,本文以微纳增材制造技术为基础,使用工业设计中的模块化设计思想,对微流控芯片进行模块化设计。在理论研究方面,本文综合研究了各类模块划分方法,紧紧围绕用户需求与产品模块之间的映射关系,使用FAST分析法、开放式结构产品的研究方法,建立了微流控芯片产品功能树,并梳理了微流控芯片的产品架构,从而完成了对微流控芯片的模块划分。在微流控芯片的
GaN功率器件具有临界电场高、开关速度快、载流子迁移率高等优点,广泛应用于高频桥式电源系统中。在桥式系统中,GaN功率器件需依靠高速、高可靠的栅极驱动芯片来驱动。自举二极管是GaN功率器件驱动芯片中自举电路的核心高压器件,提升自举二极管的性能对GaN功率器件驱动芯片的高频、高可靠性能具有重要意义。本文基于已流片的硅基自举二极管,对其正向导通能力、反向恢复速度以及反向恢复可靠性进行研究。研究发现反向
近年来,随着人们对无线产品的需求不断增长,能够覆盖多种无线通信频段的宽带通信系统已经成为当前研究的热点。接收机射频前端电路作为无线通信系统的关键模块,也必须要满足宽带的需求,射频前端电路的性能将直接影响整个接收机的整体性能,所以宽带接收机射频前端电路的研究具有广阔的应用前景。本文基于40nm CMOS工艺,设计了一款工作频率为0.2~2.5GHz的宽带接收机射频前端电路,主要由低噪声放大器(LNA
过去几年中,随着消费者对无线产品的需求增加,无线局域网(Wireless Local Area Networks,WLAN)技术逐渐走向成熟。为了实现较高的数据传输速率,无线局域网采用了正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术进行信号调制,该技术具有非常高的峰均比。因此,功率放大器(Power Amplifier,PA)作为
随着现代科学技术和信息处理技术的蓬勃发展,光电探测作为一门研究光电转换的新兴技术,因测量精度高、速度快、非接触、响应频带宽、信息容量大等特点,已成为现代信息科学的重要分支,广泛应用于制造业、植业、林业、交通运输业、通讯产业、公共服务业等。光电探测系统中的核心光电转换器件为探测器,光电流中包含的相关信息需要后续接口电路和读出电路(Readout Circuit,ROIC)进行相关处理和分析,最终转换
压控振荡器(Voltage Controlled Oscillator,VCO)是无线通讯系统中产生本振信号的核心模块。它与高速二分频器配合,可以产生正交差分信号。在无线局域网(Wireless Local Area Network,WLAN)应用中,802.11b具有避免网络冲突发生和大幅度提高网络效率等优点。因此,本文设计的应用于WLAN802.11b的压控振荡器及高速二分频器具有良好的工程背