【摘 要】
:
二阶常微分方程初边值问题,包括线性与非线性情形,摄动情形以及方程组的情形,在许多领域都有非常广泛的应用但几乎不可能给出解析解,除非是对非常非常简单的线性情形。幸运的是,近十多年来,学者们在寻找逼近解析解方面却有了很大的突破和进展,提出了一些好的方法,尤其是中国学者廖世俊创立的同伦分析法以及何吉欢创立的同伦摄动法利用同伦摄动法给出微分方程的逼近解析解,最主要的关键是同伦的构造但同伦的构造不是唯一的,
论文部分内容阅读
二阶常微分方程初边值问题,包括线性与非线性情形,摄动情形以及方程组的情形,在许多领域都有非常广泛的应用但几乎不可能给出解析解,除非是对非常非常简单的线性情形。幸运的是,近十多年来,学者们在寻找逼近解析解方面却有了很大的突破和进展,提出了一些好的方法,尤其是中国学者廖世俊创立的同伦分析法以及何吉欢创立的同伦摄动法利用同伦摄动法给出微分方程的逼近解析解,最主要的关键是同伦的构造但同伦的构造不是唯一的,而是有很多选择有些同伦的构造理论上虽然可行,但在计算时根本无法进行,其计算难度与求解原问题没有本质区别,甚至更难:有的虽计算上可行,但计算量很大因此对各种可能的同伦构造进行比较分析,然后找出计算可行,尤其是逻辑结构简单,易于编程,计算量小的同伦构造,或者另辟蹊径,构造新的同伦,进而得到精确的逼近解析解就具有很大的意义本学位论文针对带Dmchlet边界条件的两点摄动边值问题、带Neumann边界条件的两点摄动边值问题、非线性两点边值问题以及带初值条件的二阶非线性方程组,构造了各种有效可行的同伦,有的是第一次构造,有的是克服了已有同伦方法的缺点,进而给出了高精度的逼近解析解大量数值算例验证了我们方法的有效性
其他文献
社会经济水平的飞速发展极大的促进了人们思想观念的改变,同时,各行各业也在积极调整本行业的思想观念,以便更好的跟上人们不断增长的文化物质需求。其中,室内环境艺术设计尤其是软装饰材料在室内环境中的应用是人们关注的焦点之一,并且随着"轻装修,重装饰"思想的逐渐流行,对软装饰材料的研究和应用越来越被人们所重视。软装饰材料独有的特质可以给人们以富有感染力和特色的室内环境,带给大家不同的感受。本文从软装饰材料
圆填充是具有特定相切模式且其内部不相交的一种圆格局。Fields奖得主W. Thurston于1985年提出一个猜测,即六边形圆填充可以离散近似Riemann映射。1987年,B. Rodin与D. Sullivan成功地证明了这个猜测。这标志着对圆填充的研究进入了一个崭新的发展时代。本文的主要工作包括两个方面:第一,讨论有界度圆填充刚性常数的近似估计。根据有界度圆填充的性质,结合其与共形映射的关
本文讨论了矩阵Sharp序,并给出了Sharp序的一些新的等价刻画,利用矩阵的广义奇异值分解,给出矩阵的加权M-广义逆的表达式,讨论矩阵的加权M-广义逆的唯一性及矩阵加权M-偏序的性质;研究模糊矩阵正则性及其存在的充要条件,同时提出了模糊矩阵广义逆有效算法。
本论文研究了2-维黎曼流形之间的双调和映射。首先利用局部等温参数坐标,推导出了一般2-维黎曼流形之间的双调和方程的复形式,从而推广了众所周知的调和方程的复形式。作为应用,我们用所得方程刻画了常高斯曲率曲面之间的线性双调和映射,并找到了目标曲面的一类共形度量,使得从欧氏平面到该目标曲面的任意线性映射都是双调和映射;我们还研究了2-维欧氏空间到2-维契积度量空间之间的双调和映射,以及曲面上的双调和度量
圆填充是指常曲率曲面上具有特定相切模式的一种圆格局。圆填充理论在复分析与离散微分几何的交叉学科中是一个快速发展的研究领域。近几年来,在这个领域研究中所取得的成就起源于费尔兹(Fields)奖得主W.Thurston在1985年提出的六边形圆填充可以用来近似Riemann映射的方案。对于圆格局的研究,从由其内部不相交的圆组成的经典圆填充发展到由其内部可以重叠的圆组成的圆模式。本文的主要工作如下:首先
Hilbert空间中的框架概念是由R. J.Du?n和A. C. Schae?er于1952年研究非调和傅里叶分析时引入的.小波分析诞生以来,框架理论得到了迅速发展,现已广泛应用于信号处理、图像处理、数值计算等领域.本学位论文主要针对广义Bessel乘子进行讨论,它由五章组成:第一章简要介绍小波分析、框架理论产生背景,并简述论文的主要工作及论文结构.第二章给出通常框架的定义以及与其相联系的算子,介
随着我国建筑业的迅速发展,连体结构由于造型好且使用方便,被越来越多的应用于建筑结构中。连体结构常用的连接形式有柔性连接、半刚性连接及刚性连接等,对一边采用滑动连接一边采用铰接的某弱连接连体结构进行了设计与分析。连接体主要受力构件采用方钢管,为便于施工,连接体楼板采用压型钢板组合楼板,为了增大连接体自身的平面内刚度,连接体楼板板底满布交叉水平支撑。根据连接体所在位置,采用时程分析法计算得出对应楼层罕
基于四次多项式样条函数,本文提出求解二维线性双曲方程的两个新方法.全文主要内容如下:一、首先介绍现有的求解二维线性双曲方程的方法和结果.二、对一元n次多项式样条函数作简单介绍,包括基本概念、均匀划分下结点处四次样条函数关系式以及四次样条插值在结点处的误差展开.三、基于均匀划分下结点处四次样条函数关系式,对两个空间变量进行离散,同时也对时间变量进行离散,提出了求解二维线性双曲方程的一个新的三层隐格式
本文主要研究矩阵核心逆的表征,性质与计算方法.内容安排如下:第一章主要介绍本文需要用到的符号,定义及引理,并简要介绍了本文的主要研究结果.第二章给出矩阵A的充要条件及矩阵核心逆Ac的表征.并通过利用分块矩阵给出了幂等矩阵核心逆的一些性质以及幂等矩阵的核心逆与群逆,Moore—penrose逆的相互联系.第三章给出矩阵核心逆的极限表示和积分表示,并由此表示计算核心逆Ac.第四章给出矩阵核心逆的三种迭
本文主要研究了算子A-CB在Banach空间上一些条件下广义Drazin逆的表示.内容安排如下:第一章介绍本文需用到的一些符号,定义及引理,并给出本文的主要结果.第二章给出算子A-CB在Banach空间上一些条件下广义Drazin逆的表示.第三章讨论算子乘积核心逆在0点特征投影的一些性质,研究具有相同核心逆特征投影的两算子之间的关系,给出相同核心逆特征投影条件下核心逆的扰动界.