【摘 要】
:
矩阵不等式作为矩阵论中的重要内容,吸引着众多的线性代数工作者.本文主要针对矩阵的Frobenius范数及行列式进行研究讨论,得出了一些新的不等式,具体内容和创新点包括: 1.
论文部分内容阅读
矩阵不等式作为矩阵论中的重要内容,吸引着众多的线性代数工作者.本文主要针对矩阵的Frobenius范数及行列式进行研究讨论,得出了一些新的不等式,具体内容和创新点包括: 1.对正定矩阵Frobenius范数下的Young不等式给出了几个新形式.这些不等式从新的角度刻画了矩阵Young不等式,与经典的Young不等式相比,结果更精确. 2.对Omar Hirzallah, Fuad Kittaneh的结论进行了改进,并将其推广到复矩阵上,得出了更一般的改进形式. 3.进一步改进 Omar Hirzallah的不等式,得出了矩阵 Frobenius范数的两个Heinz不等式. 4.对IMAGE中林明华提出的Hadamard型不等式给出了部分证明.另外,对于一种特殊的矩阵,我们证明该Hadamard型不等式成立. 5.利用矩阵优超理论提出并证明了一个新的Hadamard型不等式。
其他文献
本论文主要包括两部分. 第一部分针对非线性Klein-Gordon方程利用EQrot1和零阶Raviart-Thomas元建立了一个自然满足Brezzi-Babu(s)ka条件的新非协调混合元逼近格式.基于EQ
多阶段系统的最优控制问题是控制领域里研究的一类重要课题。当系统从一个阶段转移到下一个阶段时,可能会受到一些干扰,这里的干扰不是通常所考虑的随机或者模糊的,而是“不确定
在这篇论文中,我们主要研究Hilbert空间上几类算子不等式的推广.根据内容分为四个部分进行阐述。 第一章,我们主要介绍了有关算子不等式近些年的研究状况和研究背景,并对常用
数学工具在金融工程中获得了越来越多的关注,尤其是Gerber,H.U等人将鞅的理论和方法应用到风险理论中,使得该学科得到了迅速的发展,定价理论更是成为了资产组合理论、资本资产定价模型之后获得诺贝尔经济学奖的重要理论。随着金融与保险市场发展,保险公司不再仅满足于求得破产概率,破产时间等几个精算量,转而寻求某种措施使得风险最小,或者收益达到最大。这些都属于金融保险中的最优控制问题。过去几十年里,通过随
本文主要研究指标1积分代数方程的多步配置方法.积分代数方程的具体模型广泛应用在物理学、化学和工程等众多领域,有着重要的理论和实用价值. 本文首先回顾了Volterra积分
对李代数结构的研究是李代数的一个重要内容.对李代数的导子的结构的研究可以从一定程度上很好的反映出李代数的结构特点.近些年来,许多研究者都研究过一般线性李代数及其子代
在3D形状数据中,经常出现采样信息不完整的现象,导致由采样数据生成的离散曲面带有部分缺失。对缺失部分进行检测和修复是计算几何和数字图形处理的一个重要课题。对于空间-时
本文研究拟周期SL(2,R)-Cocycle的约化问题,主要是对其可约性进行讨论和总结.本文主要讨论的是在Liouvillean频率下,拟周期SL(2,R)-Cocycle的旋转可约性,主要包括了两个部分:解析C
在数学和物理学的许多分支中,以单变量的Laurent多项式环为坐标代数的仿射Kac-Moody代数及其表示都有着非常重要的应用.而量子环面代数作为Laurent多项式代数的非交换化推广,