峭度准则相关论文
电力系统中局放信号的采集容易出现噪声干扰,从而导致无法准确提取局放信号,针对这一问题提出了联合变分模态分解(VMD)与改进小波......
针对强噪声干扰背景下微弱故障特征信息难以提取的问题,提出了一种基于奇异值分解(SVD)-形态降噪的Teager能量算子(TKEO)故障诊断......
期刊
针对滚动轴承早期微弱故障特征难以从强噪声背景中分离的问题,提出了一种本征时间尺度分解(ITD)和自适应广义形态滤波的特征提取方法......
在噪声干扰下有效提取振动信号所包含的微弱故障特征,是轴承故障诊断的关键问题,提出了一种基于敏感奇异值分解(SSVD)和总体平均经验......
针对桩基检测环境复杂,存在复杂噪声的问题.提出一种基于峭度准则和信号相关性分析的经验模态分解(EMD)去噪改进算法,通过峭度准则......
为提高滚动轴承故障诊断的智能性及准确性,针对传统模型难以提取故障特征的问题,提出了一种基于变分模态分解(VMD)及卷积神经网络(......
轴承的故障诊断是保证设备安全运行的重要手段。故障诊断的关键是振动信号解调的方法。自适应噪声完备集合经验模态分解(CEEMDAN)......
针对滚动轴承早期故障特征非常微弱,易受随机噪声和其他信号干扰而难以提取等现象,提出了用最大相关峭度解卷积(Maximum Correlate......
针对旋转机械早期微弱故障诊断问题,提出了基于多元经验模态分解的旋转机械早期故障诊断新方法。首先将多个加速度传感器合理布置......
针对滚动轴承故障诊断问题,提出一种结合局部均值分解(LMD)和切片双谱的诊断新方法。首先利用LMD算法对故障信号进行自适应分解,分解后......
针对自然图像压缩收敛速度慢的问题,提出一种新的基于峭度的绝对值和固定系数方差的稀疏编码SC(Sparse Coding)算法。该算法采用稀疏......