重要性密度函数相关论文
非线性非高斯下后验概率密度函数解析值无法获得,需设计合理的重要性密度函数进行逼近.传统粒子滤波(particle filter,PF)直接采用......
为了克服传统粒子滤波中出现的粒子匮乏现象,提高其应用于列车组合定位的精度,在粒子滤波中应用容积卡尔曼滤波来产生重要性密度函......
针对在GNSS/INS列车组合定位中普遍采用的扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)等滤波技术无法满足复杂的高速列车组合定位环境问......
针对非线性非高斯条件下目标跟踪容易发散和精度下降等问题,将容积粒子滤波引入到交互式多模型算法中,提出了一种基于容积粒子滤波......
针对非线性系统的状态估计精度较低的问题,提出基于容积卡尔曼滤波(CKF)的辅助粒子滤波(APF)算法—CAPF算法。该算法采用容积数值积分......
针对粒子滤波(PF)算法由于粒子的数量和质量的影响、重要性密度函数不能直接求得、重采样过程中噪声无法优化而使粒子退化严重以致跟......
在对扩展卡尔曼滤波、不敏卡尔曼滤波和粒子滤波3种非线性滤波方法进行研究的基础上,对粒子滤波算法的重要性密度函数的选取方法进......
针对非线性、非高斯系统状态的在线估计问题,提出了一种新的高精度粒子滤波算法。该算法通过引入积分修正因子,对积分卡尔曼滤波器......
针对标准粒子滤波算法粒子退化和贫化问题,提出了一种基于高斯-牛顿迭代思想的容积卡尔曼粒子滤波算法.该算法利用当前量测信息,使......
通过对高斯粒子滤波(GPF)算法的分析与总结,提出了一种基于无味卡尔曼滤波(UKF)方法的改进GPF算法(改进UGPF算法)。该方法主要利用UKF获......
针对常规粒子滤波算法使用先验密度函数来采样粒子,从而使粒子分布依赖动态模型来降低估计精度的问题,以基于观测量相似函数采样的相......
解决水下水声目标的定位跟踪问题,需要建立动态的非线性非高斯模型,粒子滤波直接采用未含有最新量测信息的状态转移先验分布函数作为......
对于高斯粒子滤波器重要性密度函数(IDF)的构建,递推更新高斯滤波器(RUGF)依据非线性测量函数梯度对目标运动状态进行渐进式的更新......
粒子滤波算法在处理非线性,非高斯问题的状态估计方面有独特的优势。粒子滤波方法由于存在粒子退化,粒子多样性匮乏等问题,不能准......
用迭代扩展卡尔曼滤波方法来生成辅助粒子滤波的重要性密度函数,得到了一种新的改进的滤波算法:迭代扩展卡尔曼辅助粒子滤波.仿真结果......
当前,科学家通过结合INS惯性以及GNSS卫星导航两种定位技术,提出了GNSS/INS新型定位技术,这种定位技术结合了INS和GNSS两种定位技......
高斯粒子滤波是一种免重采样的粒子滤波,不会出现粒子退化,但其重要性密度函数由于没有考虑到最新量测信息,使得滤波性能明显下降,......
针对非线性、非高斯系统的状态估计问题,该文提出了一种基于统计线性回归的粒子滤波算法。在该算法中,首先对非线性函数基于统计线......
毫米波/红外(MMW/IR)传感器是各国发展多模复合制导技术的重点.针对平方根无迹卡尔曼滤波(SR-UKF)的估计算法存在线性化误差及粒子滤波......
针对基于粒子滤波的检测前跟踪(PF-TBD)技术在弱目标的跟踪定位中,目标检测概率较低的问题提出改进。首先,对重要性密度函数进行重新......
高精度的状态估计是配电网安全稳定运行的基础。粒子滤波(Particle Filter,PF)选取重要性密度函数不准确以及卡尔曼框架下滤波方法......
传统高斯混合粒子概率假设密度滤波器(Gaussian mixture particle probability hypothesis density filter,GMP-PHDF)采用先验状态......
重要性密度函数的选择对粒子滤波至关重要,围绕重要性密度函数的选择,已提出许多改进粒子滤波算法,典型的有扩展卡尔曼粒子滤波(EP......
如何得到重要性密度函数是粒子滤波算法的关键问题之一。首先阐述了粒子滤波的一般方法;然后在分析修正无偏量测转换统计特征的基......
统计信号处理中的非线性滤波问题广泛存在于目标跟踪、红外弱小目标检测、导航、故障检测、金融等相关领域。粒子滤波作为解决非线......
提出了一种基于迭代扩展卡尔曼的粒子滤波新方法.该方法利用迭代扩展卡尔曼滤波的最大后验概率估计产生粒子滤波的重要性密度函数,......
针对非线性/非高斯系统的状态估计问题,提出一种采用求积分卡尔曼滤波(QKF)算法来产生重要性密度函数的粒子滤波新算法——PF-QKF......