论文部分内容阅读
高斯粒子滤波是一种免重采样的粒子滤波,不会出现粒子退化,但其重要性密度函数由于没有考虑到最新量测信息,使得滤波性能明显下降,且该算法没有较高的实时性。针对这个问题提出一种基于CKF的高斯粒子滤波算法—CKGPF算法。该算法利用CKF算法构造高斯粒子滤波的重要性密度函数,且在时间更新阶段借助CKF算法来完成只对高斯分布参数的更新。仿真结果表明,CKGPF算法相比于标准GPF算法不仅提高了滤波精度,而且还具有较好的实时性。