甜叶菊有效成分动态积累分析及水提液澄清工艺初探

来源 :食品工业科技 | 被引量 : 0次 | 上传用户:sdrtgwdrtwertwert
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了探索甜叶菊有效成分积累规律,本研究采用高效液相色谱法测定了在2018年7月24日至10月16日甜叶菊谱星6号叶中甜菊糖苷、绿原酸类和类黄酮含量的变化;采用壳聚糖季铵盐、壳聚糖盐酸盐、白色聚合氯化铝、黄色聚合氯化铝、硫酸亚铁+氢氧化钙等5种絮凝剂对甜叶菊水提液进行澄清处理,通过分析水提液澄清率及3种甜菊糖苷和6种绿原酸类在澄清液中的保留率,探索甜叶菊水提液的澄清方法.结果表明,甜叶菊叶片生物量积累呈上升趋势;各甜菊糖苷的含量变化幅度小;绿原酸类及类黄酮成分的积累与生长期密切相关,含量呈现降低-升高-稳定-降低的动态变化趋势.甜菊糖苷、绿原酸类和类黄酮的含量在9月18日至10月2日时段达到最高值,分别为168.74、73.78和14.88 mg/g.结合产量和有效成分两方面因素,确定新疆巴州甜叶菊最佳采收期为9月中旬至10月初.不同的絮凝剂对甜叶菊水提液的澄清效果不同,采用壳聚糖盐酸盐絮凝处理水提液中9种有效成分的保留率最高,以0.45 g/L壳聚糖盐酸盐在45℃条件下澄清率达到89.39%.壳聚糖盐酸盐可以作为适宜的絮凝剂应用于甜叶菊水提液中甜菊糖苷和绿原酸类的分离纯化.
其他文献
本文以滇橄榄果渣为原料,优化其膳食纤维的碱法提取工艺,同时探讨了滇橄榄果渣、总膳食纤维(total dietary fiber,TDF)、水不溶性膳食纤维(insoluble dietary fiber,IDF)及水溶性膳食纤维(soluble dietary fiber,SDF)的理化性质及其体外吸附能力.结果表明:碱法提取滇橄榄果渣膳食纤维的最优工艺为:NaOH浓度为8 g/L,料液比为1:35(g:mL),70℃处理40 min,IDF和SDF的得率分别为61.72%±0.04%、17.57%±0.
为缓解榛子油的氧化速度,增加储藏期和扩大其应用范围,本研究以β-环糊精(β-cyclodextrin,β-CD)为壁材,采用超声波辅助分子包埋法制备榛子油微胶囊,通过响应面法优化了微胶囊的工艺条件,同时对其理化性质进行了测定.结果表明:当壁材浓度(H2O/β-CD)为16:1、壁芯材比例为5:1、包埋时间为62 min和包埋温度为59.3℃时,微胶囊的包埋率达到69.18%,产率达到59.74%.微胶囊的平均粒径为880.4 nm,水分含量为2.85%,溶解度为55.95%,休止角为42.49°.通过扫描
以沙米粉、杂粮粉、杂豆粉和填充粉为主要原料,采用D-最优混料试验设计方案,研究了不同原料复配比例对沙米复合代餐粉感官评分的影响,建立复配比例与感官评分之间的回归模型,考察了配方中各原料的相互效应,获得了最佳配方.具体配方为:沙米粉22%、杂粮粉39%、杂豆粉35%、填充粉4%.在此配方条件下,对代餐粉的蛋白质营养价值进行评价分析,代餐粉的氨基酸比值系数分(SRCAA)和必需氨基酸指数(EAAI)分别为82.02和63.14,蛋白质营养较好.结合生物价(BV)、营养指数(NI)和SRCAA与EAAI指标综合
以蒲公英橡胶草根为原料,采用超声提取的方式,通过单因素实验和响应面试验探究了超声功率、提取时间、超声温度、液料比对蒲公英橡胶草菊糖提取率的影响,得到蒲公英橡胶草菊糖提取的最佳工艺为:超声功率230 W、超声时间34 min、超声温度61℃、液料比30:1(mL:g),菊糖提取率为20.14%±0.19%.采用氢氧化钙-磷酸法、三氯乙酸法、Sevage法进行脱蛋白纯化,得出氢氧化钙-磷酸法的效果最好,其蛋白清除率达90.78%,菊糖损失率为26.44%.将菊糖粗提液经蛋白纯化、脱色、旋蒸、醇沉及真空冷冻干燥
为优化猴头菌液体发酵产多糖、核苷、总萜的培养工艺,探究其抗氧化活性.以三种活性成分产量为指标,通过单因素实验筛选出合适的碳源、氮源、温度、转速、pH、接种量,以采用熵权法赋权计算3种活性成分产量的综合评分为响应值,通过Box-Behnken建立数学模型确定猴头菌液体发酵最佳条件,对发酵产物进行抗氧化活性评价.结果表明:最佳碳源为可溶性淀粉和玉米粉,氮源为酵母浸粉和山药汁,温度23.5℃,转速128 r/min,pH5.9,接种量8.5%,在该条件下,猴头菌液体发酵条件的综合评分为2.090,与模型预测综合