【摘 要】
:
变分不等式是当今数学科学中一个非常有利的工具,其在优化、控制问题和工程科学中有广泛的应用.分裂变分不等式作为变分不等式问题的推广形式,也是数学研究领域的一类热点问
论文部分内容阅读
变分不等式是当今数学科学中一个非常有利的工具,其在优化、控制问题和工程科学中有广泛的应用.分裂变分不等式作为变分不等式问题的推广形式,也是数学研究领域的一类热点问题,其在信号处理、阶段检索、图像重建以及在强调治疗中有广泛的应用.本论文主要研究Hilbert空间中一类广义非线性混合拟似变分不等式问题和一类分裂一般强非线性拟变分不等式问题及一类分裂一般变分不等式组的迭代算法.第2章主要研究了Hilbert空间中一类广义非线性混合拟似变分不等式问题.首先以凸函数的极小化序列为工具在一定条件下建立了辅助广义非线性混合拟似变分不等式问题解的存在唯一性结果.在此基础上,利用辅助原理技术构造一个迭代算法,并证明了由算法所生成的迭代序列的收敛性和广义非线性混合拟似变分不等式解的存在性.本章结果改进并推广了相关文献的相应结果.第3章主要研究了Hilbert空间中一类分裂一般强非线性拟变分不等式和分裂一般变分不等式组问题.分别以投影算子为工具,将其转化为不动点问题,在此基础上分别提出了一个迭代算法,并在映射的强单调性和Lipschitz连续性等条件下,证明了所生成的序列的强收敛性.
其他文献
由Grothendieck-Verdier在上个世纪60年代引入了导出范畴的概念,在代数表示论和代数几何等领域取得巨大成功.2010年高楠和章璞引入了 Gorenstein导出范畴并得到了 Gorenstein
伴随着科学技术的日益进步,微分包含理论与我们的日常生活联系更加紧密.因此开展这方面研究的学者日益增多.同时发展包含解集的结构问题逐渐成为国内外研究的热点内容之一,很
干水(dry water,DW)是由纳米级疏水性二氧化硅颗粒与水经过高速搅拌得到的具有良好流动性的粉末,干水自身的性质与二氧化硅颗粒的接触角有关。干水的主要成分是水,因此干水具有液体的流动性。干水作为一种气包水的反向泡沫体系,与液态水相比,具有更高的比表面积,高度分散的水滴可以显著地增强体系对气体的吸附动力学。本文通过高速剪切法制备了干水、环糊精干水(dry cyclodextrin,DCD)、干
图G的一个k-无圈点染色是满足任意两种颜色类的导出子图是森林的G的一个k-正常点染色,G的无圈色数是使G存在无圈点染色最少的颜色数,记为a(G).G的一个k-无圈全染色是满足每一
最优控制,或称为动态优化,作为现代控制理论的核心,目前已经被广泛应用于石油化工、生物医学、通信网络等社会生活和工业领域中。通过最优控制算法求解得到受控系统的最优操
长三角地区位于我国典型东亚季风区,快速的城市化、工业化、农田扩张以及伐林造林等人类活动使得该地区土地利用/覆盖变化(LUCC)十分复杂。LUCC使得地表反照率、粗糙度以及波
哈密瓜是新疆的特色水果之一,但采收期相对集中,含糖量较高,生理代谢旺盛,后熟衰老进程迅速,致使果实品质下降。低温贮藏是哈密瓜保鲜最为有效的方法之一,但不适宜的贮藏温度
害虫治理是农业可持续发展的重要组成部分.传统的害虫治理手段主要包括化学控制和生物防治两种.害虫综合治理是综合利用农业、生物、化学、物理等方法来控制害虫浓度,使其控
自世界银行于2003年发布《营商环境报告》以来,当前全世界人们已经普遍意识到在经济社会发展中建设营商环境尤为重要。近年来,天津市先后出台了一批优化营商环境的政策,收到良好的成效。2018年9月,天津市启动“一制三化”改革,把营商环境建设作为“放管服”改革的升级版,改革的步伐越发有力。本文在梳理汇总前人研究分析结果的基础上,立足河北区营商环境,结合有限政府理论、新公共管理理论展开详实的分析与研究。开
本论文所要进行探讨的是关于血吸虫病在多个染病者群体中传播的数学模型,通过对模型稳定性分析及数值模拟,来推断不同发生率,不同感染度以及时滞对血吸虫病的影响.具体内容如