钙钛矿基非均相类芬顿体系降解废水中四环素的研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:taobixianshi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
四环素类抗生素废水作为具有高生物毒性和低可生化性的难降解有机废水,被视为污水处理领域的难点之一。而非均相类Fenton技术是基于Fenton技术,采用固相催化剂的高级氧化技术,因此能够有效处理难降解有机废水。在高效的非均相类Fenton催化剂的研究中,钙钛矿因具有良好的催化能力和稳定性而被视为具有潜在的研究和应用价值的非均相类Fenton催化材料。本研究利用溶胶凝胶法制备不同A位缺陷的钙钛矿Ca1-xFe O3-σ(x=0、0.1、0.2)和不同钴取代量的钙钛矿CaFe1-xCoxO3-σ(x=1/3,1/2,2/3,1),并分别对形貌结构、催化性能等方面进行了研究。本研究采用多种表征分析了Ca1-xFe O3-σ的基本性质,确认其均为具有钙钛矿晶体结构的不规则小尺寸颗粒。构建了Ca1-xFe O3-σ非均相类Fenton体系,以四环素为目标物,考察了Ca1-xFe O3-σ的性能。结果表明Ca1-xFe O3-σ优于常规的非均相类Fenton催化剂。而在合成的Ca1-xFe O3-σ中,Ca0.9Fe O3-σ的催化性能最佳,在初始p H为3时可以降解体系中88.3%的四环素,但其催化活性受初始p H、H2O2浓度和催化剂投加量的影响较大。Ca0.9Fe O3-σ具有良好的稳定性,重复使用3次之后仍有70%以上的四环素去除率。·OH为反应体系中主要的氧化性物质,而Ca0.9Fe O3-σ上的Fe(Ⅱ)/Fe(Ⅲ)组分和氧空位为反应的活性位点,另外还推导了体系中可能存在的四环素分解途径。为了拓宽催化剂的适用p H范围,制备了CaFe1-xCoxO3-σ,并用多种手段进行分析。表征结果体现了B位掺杂Co不会改变原有晶体结构,还能提高钙钛矿的氧空位浓度。构建了CaFe1-xCoxO3-σ非均相类Fenton体系,以四环素为研究对象,考察了材料的催化活性。其中,CaFe0.5Co0.5O3-σ具有最佳的催化性能,在最初p H为3-11范围内均能氧化79%以上的四环素,但其性能受催化剂投加量和H2O2浓度的影响较大。CaFe0.5Co0.5O3-σ的稳定性良好,循环使用4次均能保持75%以上的四环素去除率。·O2-为反应体系中主要降解污染物的氧化性物质,CaFe1-xCoxO3-σ上的活性位点为Fe(Ⅱ)/Fe(Ⅲ)组分、Co(Ⅱ)/Co(Ⅲ)组分以及氧空位,另外还推导了四环素在体系中可能的降解途径。
其他文献
本文调查了大班幼儿的入学适应性,摸清他们在体能平衡、学习技能、生活技能等诸方面的入学储备;直面幼小衔接面临的具体困难,了解新时代家长对孩子入学的需求和期待等,继而明确幼小衔接的努力方向,提出科学衔接的途径和策略,做好双向衔接、主动衔接,促进幼小之间的顺利过渡。
塑料因产量大、回收率低、难降解等因素,进入环境中不仅会对生态系统造成破坏,还会对生活在其中的生物造成威胁。本文就塑料生物降解效果差、预处理对塑料影响不明确等问题,将物化预处理与生物降解两种方法进行耦合,筛选最佳塑料预处理方法,并以黄粉虫为塑料生物降解源,通过黄粉虫代谢产物和肠道菌群的表征和测序分析,探究物化预处理对黄粉虫降解塑料的影响和黄粉虫取食预处理塑料肠道微生物响应。本文从预处理对塑料的影响入
以次氯酸钠为主要成分的无机含氯消毒剂多年以来在多种行业消毒得到了广泛应用,而清洁活动产生的次氯酸的排放使得次氯酸钠清洁消毒活动成为一种潜在的大气环境污染源。众所周知,次氯酸在体内由髓过氧化物酶催化过氧化氢氧化氯化物产生,是细胞产生的主要强氧化剂,以杀死细菌和其他入侵病原体。目前,体相内次氯酸与磷脂的反应研究已趋于成熟,但对于环境中次氯酸对磷脂的气-液界面的反应目前研究极少。因此,探究界面条件下次氯
在生产生活中大量废弃的分离膜造成了严重的污染和浪费,影响生态和环境健康。目前传统的废弃膜处理方法通常也会导致次生污染的发生。可生物降解分离膜材料可通过一定的生物催化化学过程将膜完全降解成二氧化碳和水,不会对生态环境造成破坏。目前对可生物降解分离膜材料的研究还比较少,尽管聚乳酸(PLA)作为一种可生物降解材料已经应用于包装和医疗行业,但在分离领域的研究依然不充分且应用种类较为单一。尤其是PLA具有明
聚羟基丁酸脂(PHB)具有生物降解性,生物相容性,且机械性能与传统塑料相当,是传统塑料的理想替代品之一。以甲烷为原料的PHB生产不仅能生产可生物降解的塑料,而且能降低PHB生产成本、减排温室气体。关于甲烷氧化菌PHB合成的研究大多数是利用纯菌发酵,而纯菌培养需要严格的无菌操作。混合菌群稳定合成PHB的研究较少,且非无菌操作降低了PHB的合成成本。本文探索了以甲烷为碳源,从活性污泥中富集甲烷氧化菌群
印染废水属于“三致”工业废水,含有典型的难降解污染物,催化臭氧技术可对其实现有效处理,大幅提升出水水质,但催化剂的分离回收是其实际工程中一大问题。本文以铁锰氧化物作为活性成分,负载于粉末活性炭上,制备出具有磁性的铁锰氧化物改性活性炭,并将其应用于臭氧催化氧化工艺,以高浓度的亚甲基蓝溶液模拟的印染废水进行研究,在提高工艺催化降解有机物效率的基础上,通过磁性分离解决催化剂的回收问题。通过共沉淀法制备了
工业废水的任意排放是造成水污染的主要原因之一。罗丹明B作为一种工业染料,广泛应用于纺织、造纸等行业,这些工业污水的任意排放,对环境造成了严重危害。目前人们常使用的水污染主要处理方法有化学法、物理法、生物法等。尽管这些方法在去除染料污染方面有一定的效果,但处理不彻底、成本高昂、二次污染严重等问题到目前为止没有有效解决策略,这在一定程度限制了这些污水处理方法的实践应用。因此,开发一种绿色高效的染料污水
地外人工光合成装置是未来在火星生存提供维持人类生存所需的氧气和燃料的重要装置,目前国际上主要以Sabatier还原法再电解水或以传统工业系统装置高温化学还原和高温电解二氧化碳转化方式为主,但反应条件苛刻,能耗巨大;国内在原位资源利用装置的研制没有相应的研究报道,和国际水平相比仍有较大差距,因此,本研究以人工光合成技术作为原位资源利用,利用微流控技术精准控制二氧化碳和电解液的流动状态,从而使反应速率
罗丹明B(RhB)是一种广泛应用于皮革、纸张和纺织行业的含氮杂环染料,在自然环境中较难降解,会对水生环境、动物和人类的健康造成威胁。为了确定一种能够高效去除RhB的处理方法,本文建立了电化学耦合紫外反应系统,通过电化学反应器原位生成H2O2,并与紫外耦合提高系统对RhB的降解能力。首先用活性炭(AC)在间歇流中初步确定气体扩散电极的制备条件为电极厚度0.6 mm,压片压强18 MPa,煅烧温度36
石油化工生产中涉及大量液化烃、可燃气体等易燃易爆品的存储和加工,一旦发生气体泄露,易与空气混合进而形成可燃性的气云混合物,如果遇到电火花、明火、雷击等点火源,极易发生蒸气云爆炸(Vapor Cloud Explosion,VCE),产生危险性极大的严重事故。近年来国内外相关事故频发,厂区的爆炸将会导致大量储罐、管道、设备、构筑物等产生严重破坏,威胁人民生命和财产安全,已成为生产安全领域的突出问题。