【摘 要】
:
最小绝对偏差问题包括线性约束最小绝对值问题、线性约束最小绝对偏差问题和广义最小绝对偏差问题.由于该类问题的解具有稀疏性和鲁棒性,且能处理非高斯噪声信号,因而被广泛应用于回归分析、函数逼近、参数估计、滤波设计、信号处理、图像恢复、机器控制和语音增强等科学和工程领域.因此研究求解该类问题的高效方法具有非常重要的理论价值和实际意义.众所周知,最小绝对偏差问题非光滑,且实际问题往往规模大、结构复杂并需实时
论文部分内容阅读
最小绝对偏差问题包括线性约束最小绝对值问题、线性约束最小绝对偏差问题和广义最小绝对偏差问题.由于该类问题的解具有稀疏性和鲁棒性,且能处理非高斯噪声信号,因而被广泛应用于回归分析、函数逼近、参数估计、滤波设计、信号处理、图像恢复、机器控制和语音增强等科学和工程领域.因此研究求解该类问题的高效方法具有非常重要的理论价值和实际意义.众所周知,最小绝对偏差问题非光滑,且实际问题往往规模大、结构复杂并需实时求解.然而,传统的数值算法由于计算时间主要取决于所解问题的维数、结构以及所采用算法,因此并不满足工程技术的需求.相反,神经网络能使优化过程真正分布和并行处理,从而可实时求解大规模问题.尽管已有一些求解最小绝对偏差问题的神经网络模型,但它们结构复杂、神经元多且计算复杂性高.针对这些不足,本文利用优化理论、Lyapunov理论等,进一步研究求解最小绝对偏差问题的神经网络模型,主要工作和创新点有:1.对等式约束最小绝对值问题,通过引入新变量并利用投影理论,将其最优性条件转化为等价的双投影方程组,提出了求解该问题的可替换连续神经网络模型,为其求解提供了新方法和新途径.同时,利用欧拉法,给出了解该问题的离散模型.严格证明了所提模型是Lyapunov稳定的,且对任意初始点,其输出变量均收敛于原始问题的精确最优解.与解该问题的七个神经网络模型和数值算法相比,提出的模型神经元较少、计算复杂性较低且适合于并行实现.2.对线性等式约束最小绝对偏差问题,依据鞍点定理,给出了其最优性的等价条件,构造了求解此问题的单层神经网络模型,并利用Lyapunov方法,证明了其稳定性和全局收敛性.与解该问题的六个模型相比,提出的模型神经元较少且计算复杂性更低.3.通过引入新变量并利用变量替换,给出了广义最小绝对偏差问题最优性的等价条件,建立了求解该问题的简单化神经网络模型.与已有的四个模型相比,提出的模型神经元最少、计算复杂性较低.给出了模型平衡点与问题最优解的关系,并证明了其稳定性和收敛性.4.对线性等式约束广义最小绝对偏差问题,利用投影理论和变量替换,得到其最优性的等价条件,设计了求解该问题的神经网络模型,且其Lyapunov稳定和全局收敛.与已有的五个模型相比,所提模型的神经元最少且计算复杂性最低.数值仿真说明了所提模型的优越性和有效性,并将其应用于图像处理等实际问题,取得了良好的效果.
其他文献
当前环境下流域水循环受到气候和人类活动的双重影响,其运转机理和能量分布已经发生了巨大改变。由于人类活动的复杂性,其对流域水循环变化的贡献明显变得多样化,为了深入了解变化环境下流域水循环的主要驱动力,解决目前流域水资源供需不平衡的矛盾,需要定量探究气候变化和人类活动对流域水循环变化的影响。另外,流域水循环的变化直接影响到水资源的时空分布,导致流域气象和水文干旱问题逐渐突出。特别是近年来,全球变暖影响
有机磷神经毒剂是己知的毒性最高的化合物之一,因其易于穿透人的粘膜并能通过抑制乙酰胆碱酯酶的活性从而对中枢神经系统造成不可逆的损害。尽管国际组织明令禁止使用有机磷神经毒剂,但例如叙利亚冲突等全球军事事件中,仍有恐怖组织利用神经毒剂进行攻击。因此,对这些有毒化学物质进行降解和净化成为一项非常重要的挑战。在自然条件(如室温和环境湿度)下,对有机磷神经毒剂进行水解是最便捷的降解途径之一,然而这需要合适的催
Heusler合金是在费米能级EF上具有100%自旋极化的半金属铁磁体,因为它们的能带应用在两个自旋通道中一个自旋通道是金属,在另一个自旋通道中是半导体。Heusler合金在自旋电子学和磁电子学领域具有潜在的应用。它们可分为半Heusler合金、全Heusler合金和四元Heusler合金。本文基于密度泛函理论下的第一性原理计算,研究了RhMnSb半Heusler合金、CsYZ2(Y=V 或 Cr
害虫间歇性或周期性地爆发从来就没有停止过,每一次的大爆发都给农业、经济造成极大危害.比如近年爆发的草地贪夜蛾虫害已在全球100个国家和地区相继发生,给多个国家和地区的农业生产和经济造成重大损失,是联合国粮农组织全球预警的重大迁飞性害虫.该虫自2019年1月侵入我国西南、华南地区,然后向北方快速扩散和蔓延.由于该害虫越冬范围广,2020年再度爆发或猖獗趋势明显,害虫防控形势非常严峻.新年伊始,东非就
移动社交网络(Mobile Social Network,MSN)是移动网络领域的前沿研究方向,是未来下一代通讯技术和物联网技术的重要组成基础。借助于网络技术的快速发展和智能移动终端设备的快速普及,MSN己经成为了人们获取信息、沟通交流、分享观点和表达情感的主要途径。MSN的发展为信息的传播和共享提供了源源不断的动力。简单、快捷和无距离的特点使得MSN深入到每个人的生活当中,特别是在新闻传播、信息
动物低氧耐受研究集中于氧气运输和能量代谢两个方面。大量低氧胁迫下能量代谢研究涉及糖代谢,脂代谢研究在近15年才成为人们关注焦点。脂类可用于氧化产能、膜合成、贮能以及合成信号分子等方面,对细胞存活和增殖至关重要。有研究表明,动物在低氧条件下会产生血脂异常、脂代谢紊乱等脂代谢疾病。作为营地下生活的甘肃鼢鼠(Eospalax cansus)常年生活在低氧环境但未出现脂代谢紊乱,是理想的低氧适应模型生物。
雌激素(Estrogen)在大脑中调节多种神经功能,如树突棘形成、突触可塑性、神经递质传递以及学习和记忆。海马是雌激素的主要作用靶点,在学习和记忆中起重要作用。雌激素对海马信号通路、表观遗传学和局部蛋白合成的影响主要通过细胞内雌激素受体(ERs)和膜结合的G蛋白偶联雌激素受体(GPER)介导的。神经元上的树突棘数量、大小和形状的改变与精神疾病有关。雌激素可增加海马CA1锥体神经元的树突棘密度,增强
近些年,人们已经设计出各种金属纳米二聚体或者三聚体结构。在外部光场的作用下,由环、棒或三角形等微观纳米结构组成的二聚体或者三聚体可以产生类似于原子系统中的电磁感应透明(Electromagnetic Induced Transparency,EIT)现象,被称为等离激元诱导透明(Plasmons Induced Transparency,PIT)。事实上,PIT效应可以说是类-EIT效应。由于PI
脉冲微分系统能更精确、更合理的刻画自然界中很多生物发展状态的快速变化或跳跃现象,给人们从数学角度去揭示和研究自然界的复杂生物行为和生物现象提供了理论方法,从而指导人们实现对某些生物有规划的控制.因为脉冲微分系统的右端函数是不连续或不可微的,这导致对系统的理论研究更加困难,也很难应用相应理论去解决实际的生物问题.因此,研究脉冲微分系统在种群动力学中的应用,仍具有较高的理论价值和现实指导意义.近年来,
全世界近54%的人口居住在城市,到2050年,这个数字有可能增加到70%,达到60亿人口,这种改变对城市居民的生活和交通都是一种挑战.面对挑战,需要合理规划居住地分布,协调居住地利用与交通发展之间的关系,以提高城市居民的生活质量,进而实现城市的可持续发展.故本文研究了国内城市居住地选择模型,分析了城市交通对居住地选择的影响,为城市居民的居住地选择提出合理建议,同时为城市功能分区、居住区规划、交通预