具有变分结构偏微分方程的对称群与变分恒等式

来源 :西北大学 | 被引量 : 0次 | 上传用户:ikkonen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
变分恒等式在证明具有变分结构偏微分方程解的不存在性以及得到方程解的先验估计时有着非常重要的作用,本文研究了一些具有变分结构偏微分方程的对称群与其变分恒等式的关系. 主要有以下几方面的内容:在第一章中回顾了变分恒等式的研究背景及发展状况。在第二章中对本文所使用的基本方法和技巧做了比较详细的介绍.在第三章中主要介绍了本文的研究结果,首先说明了Pucci和Serrin得到的广义恒等式是Noether定理中散度项的展开,然后通过计算偏微分算子方程的变分对称群或散度对称群再根据Noether定理构造了各类变分恒等式.在第四章中计算了一些偏微分算子方程的对称群,变分对称群以及散度对称群.在第五章中介绍了本文所得到的结果在一些具体方程中的应用.在附录中通过本文得到的变分恒等式介绍了构造解的不存在区域为非星型区域的方法.
其他文献
本文首先介绍了两层网格方法和薛定锷方程的一些相关背景,分析了当前国内外众多学者对它们的一些研究和应用。在第二章,针对一种依赖于时间的薛定锷方程的模型问题,我们利用有限
稳定性是指系统在受到扰动作用后,其运动可返回原平衡状态的一种性能,它是所有自动控制系统都应满足的一个基本特性.稳定是控制系统能够正常运行的前提.稳定性是表征系统运动
随着预测控制在工业过程中的广泛应用,预测控制理论研究取得了很大进展.但由于实际系统的复杂性以及工业环境中各种变化因素的影响,用来描述被控系统动态特性的模型往往具有
物理,化学和生物领域中的许多模型都可归结为所谓的反应扩散方程.反应扩散方程有一类重要的解,就是形如u(x,t)=u(x+d)的解.在数学理论研究中,行波解可以揭示方程本身许多重要的性质
非线性现象广泛存在于自然界和人类社会、经济等众多领域中.随着科学的发展,反映现实自然现象的非线性现象引起人们的极大关注,因而对非线性系统的研究日趋深入.非线性数学物理
在图象重建算法中,最主要的两种重建算法是解析重建算法和基于迭代的重建算法,Landweber迭代算法是图象重建算法中基于迭代算法的重要图象重建算法。本文将针对Landweber分块
分片延迟微分方程在生态学、经济学、电磁场理论、化学及自动控制等学科与工程技术领域中都有着广泛应用,它的理论和算法研宄有着无可置疑的重要性.稳定性是微分方程理论中一
色散关系,也称频散关系(即声波在介质中传播时频率与波数之间的关系)对研究声的传播问题是及其重要的。对色散关系的讨论多数以宏观的流体力学即Navier-Stokes方程的方法进行