有序介孔氧化铝的制备及其加氢脱硫性能研究

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:wumin6230
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
清洁、高品质油品的需求与石油资源劣质化、重质化之间的矛盾越来越尖锐,这使得在柴油清洁化生产过程中的加氢负担越来越重,硫化物含量不断增加,硫化物结构变得更加复杂。氧化铝是加氢处理催化剂中应用最广泛的载体材料,但氧化铝其孔结构和表面性质存在一定的缺陷,一是普通氧化铝孔分布不集中,比表面积较低。这样的特点一方面使负载于载体表面的活性金属分散性差;另一方面存在的微孔对复杂含硫化合物的内外扩散、吸脱附以及转化都存在着明显的抑制效应;二是氧化铝表面与活性金属间过强的相互作用,不利于活性金属在硫化过程中形成高活性的活性相。因此普通氧化铝的物理化学性质已经无法满足作为劣质柴油超深度加氢脱硫的载体基质材料,针对普通氧化铝基催化剂在柴油超深度加氢脱硫存在的问题,必需寻求制备一种新型的氧化铝载体材料。本文通过模板剂法制备了有序介孔氧化铝,通过对不同制备条件有序介孔氧化铝的晶型、结晶度、比表面积及孔结构的研究,对制备的有序介孔氧化铝进行优化,得到了孔分布集中、比表面积和孔容都较大的有序介孔氧化铝。以优化后的有序介孔氧化铝为载体材料,制备了有序介孔氧化铝基加氢脱硫催化剂并进行了相应的改性,目的是降低活性金属与载体之间过强的相互作用,生成更多高活性的Ⅱ型活性相,提高对复杂硫化物的脱除能力及对多环芳烃的裂化能力。对改性前后的催化剂的金属分散性、表面酸性、金属还原性、活性相片晶的分散性等进行了研究,并研究了不同催化剂在DBT和劣质柴油上的反应规律,以期获得不同改性方法对加氢脱硫催化剂活性的影响。研究发现不同制备条件对有序介孔氧化铝的晶型、结晶度、比表面积及孔结构均有一定的影响,相比于普通的氧化铝材料,制备的有序介孔氧化铝无论是比表面积、孔分布集中度还是孔容均高于普通氧化铝。CA与P改性以及载体中添加Y分子筛均提高了催化剂活性金属的还原性能;通过对硫化后活性相片晶的研究可知:CA与P改性后,有更多Mo原子位于活性相片晶的外表面,有利于复杂硫化物的吸附与后续反应。CA改性对催化剂酸性变化不大,而P改性及载体中添加Y分子筛均使催化剂酸量明显增加,有助于C-S键的断裂。对不同催化剂在DBT和劣质柴油上的反应规律研究发现:CA与P改性后可以有效提高DBT各反应路径的反应速率常数;不同改性方法的催化剂均能提高对劣质柴油的加氢脱硫率。
其他文献
随着国内外对页岩气井、高温高压井和地层情况复杂的深井、超深井及水平井的勘探开发,油基钻井液得到了广泛的应用。提切剂作为油基钻井液重要的处理剂之一,在高温高压条件下能否保持有效的提切性能,是决定钻井液正常工作的基础。针对油基钻井液在施工过程中流变性难以调控,动静切力比较低、易发生沉降等问题,合成了一种适用于油基合成基钻井液的提切剂,对其进行了红外光谱、热重分析等表征实验,同时,对其进行了流变性、电稳
随着人们节能意识的增强,炼油厂在保证效率的前提下需要压降更低的旋风分离器。开缝式排气管在降低旋风分离器能耗上有显著作用,但开缝式排气管插入深度对分离器性能影响的规律目前还不很清楚。本文以PV型旋风分离器为基础模型,采用数值模拟与冷态试验相结合的方法对开缝式排气管进行研究与分析。同时,以降阻为目标,开发了结构更为简单的平旋流排气管结构。开缝式排气管插入深度数值模拟结果表明:排气管的插入深度对于分离器
明格布拉克油田地层复杂,裂缝发育,地层压力系数高且不易准确预测,钻井过程中极易发生频繁井漏,甚至井喷。为了实现安全快速钻井,井漏问题亟需解决,而明确钻井液漏失机理是防漏和治漏的关键。精细控压钻井是国内外广泛应用的一种先进钻井工艺,其原理是精确调整井口回压从而确保井底压力保持恒定。应用精细控压钻井可以有效解决钻井过程中的钻井液漏失难题。因此,分析精细控压钻井技术的可行性对于防漏治漏方案的提出具有重要
现代炼油企业加氢处理和加氢裂化工艺的比例不断增加,这需要消耗大量的氢气,使炼油企业氢气缺乏的问题更加突出,因此,优化炼油企业氢气系统愈发重要。在大多数的炼油企业氢气系统优化设计的研究中都假定单杂质系统,且假定氢源氢阱的流股流率是不变的。本文提出基于超结构的炼油厂多组分氢气系统模糊优化数学模型,考虑四个组分,即H2,H2S,C2+和CH4,考虑氢源氢阱流率的变化范围,分别以年度总费用最小化(TAC)
页岩气压裂返排液膜法处理工艺建模与能效分析有助于实现废水回用和合理排放。工业新鲜水脱盐处理系统模拟与灵敏度分析对脱盐工艺的优化和高效运行具有重要的指导作用。页岩气压裂返排液膜法脱盐处理系统通常涉及膜过程(例如超滤,反渗透等)和储罐等。其中膜分离单元可看作单入口双出口的半连续过程,包括运行和离线化学清洗子单元和水处理运行子单元,具有间歇用水过程的特征。然而,尚未有关于页岩气压裂返排液膜法脱盐处理工艺
天然气是一种清洁的化石能源,具有经济实惠、安全可靠的特点,在当今世界的能源结构中占据着越来越重要的位置。甲烷是天然气的主要成分,通常在天然气中含量可达90%以上。除此之外,天然气中还含有乙烷、丙烷等轻烃,这些物质是优质的化工原料。因此,有必要回收天然气中的轻烃,尤其是含量较高的乙烷,实现天然气资源的充分利用。本文首先研究传统的甲烷乙烷深冷分离工艺,提出了液化天然气(LNG)轻烃回收和空气分离能量集
发展油品清洁化技术是当前历史阶段环境保护的必然要求,在对主流加氢脱硫工艺进行技术革新的过程中,加氢处理催化剂的技术突破是关键。针对催化剂的研究一方面可以从催化剂结构组成入手,研发更高活性的催化剂,另一方面引入微波辐射等辅助手段激发催化剂的催化潜能。研究中最关键的问题是对催化剂加氢脱硫机理以及微波场与催化剂相互作用机理的认识和理解。本论文采用从头算分子动力学(AIMD)模拟、密度泛函理论(DFT)计
汽提器因其连接提升管和再生器可以提高轻油收率和降低再生器烧焦负荷而成为催化裂化的主要设备:反应-再生系统中的主要环节。近年来,由于原料油的重质化,需要对汽提过程进行强化,而在汽提器内添加内构件为最高效的方式。本文采用数值模拟的方法对无孔盘环型、开孔盘环型及格栅型汽提器内气固流动、气泡分布及气固两相的返混情况进行研究,从本质上分析不同类型内构件对汽提过程的强化机理。并在本实验室对汽提器研究的基础上,
水合物生成和分解的研究对油水多相输送管道防堵和水合物其他应用具有重要意义。本论文将多孔介质ZIF-8加入纯水或油水体系中,研究了新型多孔材料ZIF-8对水合物法储气及防聚过程中水合物生成的影响。主要研究内容如下:(1)以含多孔材料浆液为储气介质,提出吸附-水合顺序法以提高水合物储气密度。在改善水合物生成的研究中,多孔材料通常可提高储气密度较小的固定床的水转化率,并加速水转化率较低的悬浮液中水合物成
在原油开采过程中,由于流体组成、温度和压力等因素发生改变,原油体系的稳定性被破坏,导致固相沥青质从原油中析出并沉积。本论文直接在微孔隙中进行沥青质沉积行为的探究并开展了原位可视化实验,同时量化了沥青质的沉积导致孔隙内润湿性的变化。分别在液态CO2和超临界CO2的两种状态下研究CO2诱导模拟油中沥青质的沉积行为。发现随着沉积时间的增长,沥青质沉积颗粒尺寸变大。比较了注不同气体对模拟油中沥青质沉积作用