论文部分内容阅读
本文的研究对象是非线性偏微分方程,由于这些偏微分方程来源于物理和其它应用学科,具有鲜明的物理意义,因此又称为非线性数学物理方程。本文讨论几个经典的非线性偏微分方程及他们的孤立波解,特别是较为详细地介绍了反演散射方法,以及利用这一方法来求KdV方程的单孤立波解和多孤立波解。反演散射法是解非线性偏微分方程的最常用,也是最普遍的方法,许多方程都可以利用这种方法来求解,目前也取得了一些结果。
本文概述了非线性偏微分方程的一种数值解法——Adomian分解方法(ADM法),包括基本原理,Adomian多项式,噪声现象和收敛性分析。这种方法是比较简单实用的,它对方程和解法的要求都不高,但是它的缺点也是明显的,就是收敛区间比较小,我们通过对ADM法解出的级数解使用Padé逼近,有效地改进ADM法的这一缺陷,取得了良好的效果。通过对形变Boussinesq方程的实验,我们验证了ADM方法的应用,同时,通过这一例子,也说明了Padé逼近对ADM法的改进效果是非常明显的。