非瞬时脉冲微分方程解的存在性与渐近性

来源 :贵州大学 | 被引量 : 0次 | 上传用户:nathan_zk
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
现代科学技术的不断进步使得旋转机械的设计正日益向着高转速、轻型化方向发展,与此同时,对其动力学特性、稳定性以及可靠性也提出了更高的要求。现代非线性动力学理论的发展
在1968年C.L.Chang引进fuzzy拓扑空间的概念后[17],立即得到了国际学者的广泛关注,fuzzy拓扑就迅速发展起来了。其中关于半拓扑性质的研究成为了其中的一个热点。本文在文献[26
Wakamatsu倾斜模是倾斜模的重要推广。研究Wakamatsu倾斜模与倾斜模之间的关系是很自然的一件事。Wakamatsu倾斜猜想就说明了若一个Wakamatsu倾斜模的投射维数有限,则它是一个
本论文共分三章. 第一章,讨论不动点集为有限个实射影空间RP(3)与四元数射影空间HP(k)乘积的并的对合的协边分类. 设(M,T)是一个具有光滑对合T:M→M的光滑闭流形,对合的不
Sturm-Liouville边值问题起源于19世纪中叶,是为了描述固体的热传导而建立起得连续的数学模型。Sturm-Liouville边值问题有深远的物理背景,它很大一部分来源于热传导问题、弦振
设算术函数r(n)表示整数n能写成两个整数平方和的表法个数,对于该算术函数高斯研究了Q(x)=∑n≤xr(n),并最先证明了Q(x)=∑n≤xr(n)=πx+O(x1/2).后人又将余项中的指数1/2改进到
本文主要研究在欧氏空间中严格凸区域的边界上退化的Monge-Amp(e)re方程的齐次Dirichlet问题的解的存在性与正则性问题.在区域的形状不同,以及区域所在的空间的维数不同的多
在半线性偏微分方程的研究领域当中有一类非常重要的非线性现象,这类非线性现象就是分支现象,它反应的是流的拓扑结构随参数的变化而引起质的变异。分支问题主要包括局部分支问
二次型G(m1,m2):=m21+m22,G(m1,m2,m3):=m21+m22+m23,G(m1,m2,m3,m4):=m21+m22+m23+m24,…,在数论研究中十分重要.许多学者围绕二次型作了很多相关研究工作。  在二元二次型