论文部分内容阅读
智能纺纱车间监控系统界面优化设计研究
【出 处】
:
东南大学
【发表日期】
:
2021年01期
其他文献
随着无人机技术的不断发展,其所面临的应用需求越来越复杂,单无人机在执行战场勘测、编队表演、灾难救援等复杂任务时具有一定的局限性,因此多无人机协同工作被广泛应用于各行各业中。无人机自组网作为多无人机协同工作的基础,其脆弱性的研究备受关注。无人机自组网具有低延迟的网络需求并且无人机节点具有高移动性,因此该网络的网络层协议需要有节点维护实时更新路由表的特性,然而这种特性使得本地节点可了解远程拓扑,极易受
视觉同步定位与建图是一种基于视觉传感器进行定位与场景点云地图构建的重要技术。在室内结构化场景中,因为特征点稀少或区分度不明显SLAM系统容易发生误匹配或者定位精度降低等问题,本文致力于研究基于结构化场景特征的视觉定位与建图算法。主要研究内容如下:(1)提出了一种基于结构化场景的线特征改进算法。在视觉SLAM前端特征匹配过程中,通过包含深度信息的图像提取室内结构化场景的线特征,基于Cayley坐标对
基于无人机的侦察是当今世界各国进行安全侦查的重要手段,其中建筑区低空侦察是安全侦察中的一个重要分支,通过对无人机低空航拍图像进行拼接,可以获得包含丰富信息的高清全景图,有效地提高侦察效率。然而,受制于图像中高建筑物带来的大视差,现有的拼接算法在对建筑区低空航拍图像进行拼接时往往伴随错切、重影等问题。针对上述问题,本文基于高建筑物区域的分割结果提出了两种有效的建筑区低空航拍图像拼接方法:基于大视差补
现代社会的发展对电网供电可靠性要求越来越高,电网发生故障后,如果不能及时恢复,会对社会生产带来严重的影响。目前电网故障恢复过程主要是通过调度人员手工翻阅调度文件,获取相应故障恢复信息后,结合个人经验进行故障恢复,其本质上属于经验型恢复过程,智能化水平有待进一步提高。本文深入分析了知识图谱技术在电网故障恢复领域的优势,提出了构建电网故障恢复知识图谱,将非结构化的故障恢复信息转变为结构化知识进行存储的
社会经济的全面快速发展,推动了人们对于电力行业的需求,同时以窃电为主的异常用电行为事件的发生次数也在逐年攀升,使得电力公司承受了巨大的经济损失,也给国家电网的安全运行造成了一定的安全隐患。传统的防异常用电手段主要以人工稽查的方式为主,会消耗巨大的人力和物力成本,且无法做到实时准确地定位异常用电的电力用户。近年来,智能电网和信息化技术在不断地发展,实现了电网电力负荷数据及时地收集和存储,为用户异常用