基于几何Hermite插值的曲线光顺研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:huainanyan_sxnu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在计算机辅助几何设计中,人们对产品的外形有很多方面的要求,其中之一就是外形光顺性。随着市场竞争的日趋激烈,产品的外观新颖,线条流畅,曲面光顺就显得至关重要。然而,由于计算和测量数据不可避免的存在误差,由这些数据得到的曲线曲面一般都需要进行光顺处理,以得到符合设计者要求的“美观”曲线曲面。本文基于几何Hermite插值构造了平面三次Bézier曲线。当该曲线曲率不等于零时,它具有六阶逼近精度。同时还进一步构造了空间三次Bézier曲线,当该曲线曲率不等于零时,它具有5阶逼近精度。由于有理三次Ball参数曲线类似于有理三次Bézier样条曲线,也具有良好的保形性质,并且在某些方面优于有理三次Bézier样条曲线,所以根据有理Ball参数曲线理论又给出了两条有理三次Ball参数曲线G2光滑拼接条件。
其他文献
随着工业化进程的不断深化,人类对资源的需求量与日俱增,由此导致产生数量惊人的淘汰物和回返物。资源的减少环境的恶化使得企业的生产成本越来越高,从而促使越来越多的企业寻求
量子群特别是量子包络代数是近年来代数学研究的一个重要分支,有限维单李代数sl2的量子包络代数Uq(sl2)是研究一般量子包络代数的基本内容.量子多项式代数Oq=Kq[x±11,…x±1r,xr+
本文主要讨论了无界的、横向折射率分布为渐变的连续函数的一类非均匀波导结构的模式分析,得到了此类波导中的传播模和泄漏模满足的色散关系。同时也就完美匹配层(PML)在无界
本文在对多辛性研究的基础之上,提出一种新的积分方案:在空间方向上运用Fourier拟谱离散,时间方向上采用辛Euler-box格式。详细研究了该方案,给出了该方案的多辛格式和多个多辛守
赋范空间几何理论最为丰富的部分是关于Banach空间的几何理论。而光滑性的概念在Banach空间几何理论中扮演着相当重要的角色。光滑性,一方面作为凸性的对偶性质而被提出;另一方
微分方程求解是现代大型科学工程计算的核心。随着计算机的飞速发展,需要求解问题的规模越来越大,而迭代法作为解决大规模问题的有效方法,也成为求解大型微分方程最重要的方法之
本文首先对推广的Melnikov函数方法进行了补充和完善,建立了分段光滑系统的Melnikov函数零根与极限环个数之间的关系。其次,利用推广的Melnikov函数方法,研究了两类分段光滑系统
本文基于非奇异的线性变换、Lyapunov函数和滑模变结构控制等方法对广义系统、广义不确定系统、离散广义双线性系统的有限时间终端滑模控制进行了研究。本文主要内容包括以下