论文部分内容阅读
机器人学作为一门新兴学科,已有近四十年的发展历史了。近十多年来,弹性机器人的运行学、动力学、运动规划和控制问题越来越受到人们的关注。对于弹性机器人控制问题的研究,许多专家和学者在这方面已经做出了很多很好的结果。然而,那些结果主要还是集中在对系统的定性研究上,对系统的定量研究则涉及的比较少。在人们实际生活和工程应用中,更多的需要得到系统的定量结果。而如何得到解的有效近似值,就作者所知,到目前为止,还没有成熟结果。在本文中,针对一类带时滞弹性机器人模型,重点探讨其解的结构。本文研究的是一自由度,状态可以控制的带时滞弹性机器人模型,其中机器人的动力学行为是由带时滞的微分方程描述。首先,根据系统的要求,选取合适的状态空间—Hilben状态空间,运用发展方程理论知识,将一个带时滞的微分方程,等价地转化成一个发展方程;然后,利用半群理论知识和泛函分析方法,对抽象发展方程的适定性进行了研究。有了系统的适定性,我们运用复变函数和谱理论知识,对系统算子的谱作了细致的分析,进而得到谱的渐近表达式和本征向量。最后,在上述研究基础之上,证明了系统本征函数的非基性质。但是,我们仍然可以得到方程的解按照本征向量的展开式。在对所研究系统作了理论分析之后,选择适当的参数,对选定的系统进行了模拟仿真。通过对系统的仿真说明,这样得到的解不仅是绝对收敛的,而且在满足t>4Υ时,可以得到系统有效的近似解。本文是以一类时滞机器人模型为研究对象进行研究的,由于我们采用的方法具有一般性,因此这样的方法可以推广应用到其他时滞动力系统模型研究当中,诸如一些生物学模型、经济学模型、以及化学工业上的动力系统模型等等。