季也蒙酵母对西兰花采后病害的控制作用及其控制机制研究

来源 :江苏大学 | 被引量 : 0次 | 上传用户:qwer_xxx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由芸苔生链格孢菌(Alternaria brassicicola)引起的黑斑病是采后西兰花储运及销售过程中最常见且发病率最高的真菌性病害之一,由此引起的腐烂和品质劣变可造成巨大的经济损失。利用拮抗酵母进行生物防治的方法因其高效、安全等优点,被广泛应用于果蔬采后病害的控制,且已经取得了良好的效果。但拮抗酵母应用于西兰花采后病害控制的研究报道很少,其控制机制尚不明确。本论文从健康西兰花上筛选对采后西兰花黑斑病和自然腐烂具有控制作用的拮抗酵母,通过研究该拮抗酵母对西兰花活性氧(ROS)代谢、呼吸代谢和能量水平的影响,并借助于代谢组学技术和生物信息学分析其对西兰花代谢物的影响,初步揭示该拮抗酵母控制西兰花采后病害的机制,为拮抗酵母应用于采后西兰花病害的控制提供理论支撑和技术支持,对于西兰花采后的贮藏保鲜具有一定实际应用价值。论文主要研究结果如下:(1)从感病西兰花上分离到一株病原菌—芸苔生链格孢菌(A.brassicicola),经科赫法则验证,确认其为采后西兰花黑斑病病原菌。(2)通过体内和体外试验,从健康西兰花上筛选到一株拮抗酵母—季也蒙酵母(Meyerozyma guilliermondii),急性经口毒性试验确认该酵母为实际无毒类。(3)考察不同浓度M.guilliermondii对西兰花采后黑斑病的控制效果,结果表明1×10~8 cells/m L的M.guilliermondii对西兰花采后黑斑病的控制效果最好,并能显著降低西兰花自然腐烂的病情指数,且可以在一定程度上缓减西兰花的品质劣变。(4)通过考察M.guilliermondii对西兰花呼吸代谢相关酶活性、能量水平、ROS代谢相关酶活及相关物质含量的影响,分析其控制西兰花采后病害的机制。结果表明,M.guilliermondii可提高贮藏前期西兰花丙酮酸激酶(PK)、琥珀酸脱氢酶(SDH)、6-磷酸葡萄糖脱氢酶(G6PDH)以及细胞色素氧化酶(CCO)的活性,降低贮藏后期上述酶的活性,从而为机体生命活动提供充足的物质来源和能量,并能在后期降低西兰花的呼吸代谢,延缓其衰老;该酵母还能提高西兰花能荷(EC)水平,使其维持在较高的能量状态;M.guilliermondii处理还能提高西兰花ROS代谢相关酶过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、谷胱甘肽过氧化物酶(GPX)的活性,降低H2O2、O2-的含量以及膜脂过氧化物丙二醛(MDA)的含量,从而提高西兰花抗氧化能力,增强其抗病性。(5)借助于代谢组技术研究西兰花与M.guilliermondii互作时代谢物含量的变化,结合生物信息学分析拮抗酵母控制西兰花采后病害的机制,主要包括一下几方面:M.guilliermondii通过影响西兰花谷胱甘肽代谢、脂肪酸代谢、糖代谢以及核苷酸代谢相关物质的含量,并提高酚类、萜类以及生物碱等抗性物质的合成,提高西兰花的抗病性。
其他文献
聚氨酯(PU)因其优异的性能而被广泛应用于国民经济和国防军工等领域。随着聚氨酯应用领域的拓宽,过度使用导致的一系列问题也逐渐显现,比如化石资源的消耗和自然环境的污染。自愈合是一种有效地解决聚氨酯内部微裂纹问题的方法。自愈合聚氨酯不仅可以自发通过分子链的流动和化学键的可逆作用实现表面和内部损伤的愈合,而且还能有效地延长使用寿命。但是,自愈合聚氨酯的研究仍处于初级阶段,仍需对其进行发展和优化。为此,本
智能化、网联化、电动化和共享化已成为汽车工业的核心发展方向,尤其是进入21世纪以来,车辆的智能化一直是各大汽车制造商及高校重点研究的领域和方向。基于深度学习、神经网络等学科在人工智能方向的优势表现,自动驾驶感知技术得到迅猛发展,而视觉感知又是其必不可少的组成部分。本文从目标检测、车道线识别、可行驶区域三个方向深入自动驾驶视觉感知算法研究。本文首先介绍了基于深度学习的目标、车道线和可行驶区域检测的国
纯电动汽车经过多年发展,技术水平和车辆性能大幅提高,实现了产业化和智能化。但是动力电池仍存在技术瓶颈,制约了纯电动汽车的大规模推广应用。一方面,纯电动汽车仅以动力电池作为唯一动力源,其续驶里程有限,同时动力电池的性能衰退使续驶里程进一步受限;另一方面,动力电池还存在功率密度低、循环寿命有限、使用成本高等难以弥补的缺陷。而功率密度大和使用寿命长的超级电容具备了动力电池所缺少的特性,因此为了改善纯电动
芦苇是一种高大禾草,多生长于水泽陆地中,其质地细腻,富含纤维素。成熟期的芦苇,不仅可以作为造纸、建材、人造纤维等工业原料,经加工过的芦茎还能编织成各类工艺品,具有极高的经济实用价值。目前,我国湿地生长芦苇主要靠人工收获,机械收获普及程度不高。人工收获费时费力,而且生产效率低;机械收获水平相比国外落后很多,特别是在整秆收获一体化技术方面与国外相差甚远。为了提高芦苇的机械化收获水平,本课题旨在研发一款
智能汽车是汽车行业技术的发展方向,转向控制是智能汽车运动控制研究的重要内容,弯道是智能驾驶转向控制功能验证的关键场景。驾驶员模型作为描述人类驾驶员控制行为的数学模型,在智能汽车研发与应用中发挥着不可替代的作用。因此,基于仿人驾驶员模型,使智能汽车在弯道驾驶时能够表现出与人类驾驶员相似的转向控制行为,对开发智能汽车与提高智能驾驶系统的适用性、接受度和驾驶安全性具有重要意义。为此,本文以智能汽车弯道驾
低GI饮食可有效预防和改善糖尿病、心血管疾病和肥胖等慢性病,荞麦作为公认的低GI食品原料受到越来越多的关注。苦荞多酚(芦丁和槲皮素)是荞麦中的主要活性物质,可显著抑制淀粉消化。目前关于苦荞多酚抑制淀粉消化的研究多从抑制淀粉消化酶活性角度展开,而研究淀粉结构及淀粉与多酚相互作用影响淀粉消化的报道较少。为此,本论文研究了淀粉精细结构与芦丁抑制淀粉体外消化的关系以及多酚和淀粉间的相互作用,初步阐述多酚抑
2-甲基异茨醇(2-MIB)是饮用水源中的典型嗅味物质之一,给饮用水安全和质量带来了极大的挑战。现阶段,饮用水处理厂多采用活性炭吸附、臭氧氧化等物理化学方法去除饮用水源中的嗅味物质。近年来,微生物降解嗅味物质成为研究的热点,因其在饮用水或废水处理中具有较好的应用前景。然而,获得嗅味物质的高效降解微生物是关键。为此,本论文以2-甲基异茨醇为模式体系,从饮用水源太湖的样品中筛选能够高效降解2-甲基异茨
生姜(Zingiber officinale Roscoe)是我国的优势特产蔬菜,作为一种香辛料,是日常生活中不可或缺的调味品。近年来,干制生姜由于保质期长、易存储、用途广泛等优势,市场需求日趋增高,因此干燥依旧是提高生姜产品价值的主流加工方式。由于生姜外观多呈指状分支,又在泥土中生长,夹缝间藏污纳垢,在对其进行干燥前会面临清洗困难的问题。无论是日常生活还是工业生产中,生姜的清洗都需要耗费大量的水
玉米醇溶蛋白(Zein)作为来源广泛、环境友好的天然大分子蛋白质,具有良好的生物相容性、独特的自组装特性,是负载生物活性物质的良好载体。玉米醇溶蛋白与多糖可以相互作用形成复合物,多糖的参与使得蛋白质的凝胶性、乳化性、溶解性、起泡性等重要的功能性大大改善,能对生物活性成分起到很好的包埋和保护作用,但常规制备方法仍存在包埋效率低、稳定性差等不足。本文采用多模式频率超声波调控玉米醇溶蛋白-多糖的自组装并
智能驾驶汽车可以在一定程度上减少交通事故、提高车辆的安全性、缓解交通拥堵、减轻驾驶疲劳、降低燃料消耗,给人们日常汽车的使用带来便利,近些年来受到了各大汽车厂商和相关研究机构的广泛关注,汽车的智能化、网联化和电动化是未来汽车工业发展的方向,智能驾驶汽车有着广阔的前景。实现智能汽车无人驾驶的关键技术主要包括环境感知、决策规划和控制执行三部分,而轨迹规划在实现车辆无人驾驶方面起着十分重要的作用。除了安全