液态氢化非晶合金玻璃形成能力及力学性能改善机理

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:yoki1120
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
非晶合金作为潜在的结构材料,需在保持高强度的前提下提升其塑性变形能力,但如大多数的材料一样,这两个性能总是相互排斥的。然而,通过采用液态氢化方法(一种在氢/氩混合气氛下进行的氢微合金化技术),不仅能够制备出强度更高且塑韧性能更好的非晶合金,还同时提升了其玻璃形成能力。但是,目前对非晶合金无定形结构中原子排布隐藏序的有限理解无法从根本上洞悉上述现象的内在起源。为此,本论文的主要研究工作集中在:(i)对非晶无定形结构进行整体描述,并据此定义出非晶合金中软区的结构特征;(ii)氢微合金化后非晶合金玻璃形成能力改善的热力学、动力学以及结构因素;(iii)非晶合金所表现出的氢依赖变形行为的结构起源。首先,利用分子动力学模拟方法创建了不同非晶合金样品的三维原子模型,并根据配位多面体的向错密度将无定形结构中原子细分为六大类进行研究,发现在纳米尺度范围内存在一种规律性的空间分布花样,本文称之为“梯度原子堆垛结构”。非晶态局域结构表现为从松散原子堆垛到致密原子堆垛的渐变行为,相应的原子性能同样满足梯度演变规律。据此,非晶合金内部结构可具体分割成三类可识别区域:类固态区、过渡态区以及类液态区,每一个区域具有不同类型的原子。研究表明,类液态区原子与局域剪切转变位点的相关性最强,过渡态区原子次之,而类固态区原子(与类液态区原子的关联强度最低)对剪切转变的贡献最低。与“几何不稳定结构”模型不同,在本文所提出的非晶结构模型中,重点考察了中程序原子排布特点,从而能够明确出非晶中软区的结构成分,即类液态区原子和它们近邻原子的组合。这一发现有助于定量地比较不同非晶合金中软区的数量,为非晶合金独特的力学行为提供合理的解释。其次,采用分子动力学模拟原位研究了不同氢含量下Zr-Cu与Ni-Al体系的输运性质与原子结构对温度的依赖行为。从热力学角度来说,液态氢化后过冷液体的玻璃转变温度降低。与此同时,少量氢原子添加还会降低过冷液体的比热值,减缓比热随温度的变化幅度,并且增加体系的原子尺寸分散度与混合焓绝对值;这些均有利于非晶合金的形成。然而,从动力学角度来说,氢原子的存在会显著提升其周围原子的扩散能力,进而氢化过冷液体表现出更低的粘度;一般来说,这将阻碍非晶合金的形成。最后,从结构角度来说,氢化过冷液体在玻璃转变后不仅保留更多的类液态原子,还会形成更多的类固态原子,更易于形成长程无序的非晶结构。除此之外,少量氢原子添加会明显抑制晶体结构的形成,与实验观测结果相一致。简而言之,尽管氢化过冷液体表现出更明显的局域动力学不稳定性,但结构分析表明小尺寸氢原子的微合金化确实会提升非晶合金的玻璃形成能力,组成元素间的原子尺寸差异起到了决定性作用。再次,通过实验与分子动力学模拟相结合,系统地分析了氢微合金化后Zr-Cu基非晶合金内部原子尺度结构细节的变化规律,旨在识别出这一材料同时表现出高强度、塑性与韧性的结构起源。从多尺度力学实验与模拟结果来看,少量氢添加并没有诱发氢脆现象,而是对非晶合金的力学性能产生积极的影响。根据动态弛豫谱分析、电子结构分析以及模拟原子结构分析(基于“梯度原子堆垛结构”模型),氢微合金化样品中会产生更多的高活性软区,增加了变形过程中剪切带的数量,进而变形能力得到改善;与此同时,氢微合金化样品中还会形成更强的结构基体,延缓剪切带萌生,对应强度的提升。最终,与未氢化样品相比,氢微合金化样品表现出更高的屈服强度、更大的屈服应变与断裂应变。最后,采用分子动力学模拟方法,对Zr35Cu65与Zr65Cu35非晶体系进行单变量对比性研究,以探讨Zr基非晶合金的氢微合金化力学行为是否取决于氢化物形成元素的含量。尽管二者的强度和变形能力在氢微合金化后均表现出上升的趋势,但低Zr含量氢微合金化样品的力学性能改善效果更为明显。在这两个体系中,构型势能与柔性体积分布都分别遵循相似的氢依赖变化趋势;所有的氢微合金化合金不仅具有更多稳定且柔性体积更小的原子,还同时拥有较大比例的易激活原子。然而,基于“梯度原子堆垛结构”模型的原子尺度分析表明,相比于Zr65Cu35体系,少量氢原子添加能够促使Zr35Cu65中形成更多的软区以及更强的结构基体,进而表现出更大的强度与变形能力优化幅度。本文研究结果对认识非晶结构不均匀性,理解玻璃转变本质,揭示非晶态材料结构-弛豫行为-力学性能的关联机制以及开发大尺寸高强韧非晶合金具有重要意义。
其他文献
抗渗性是水泥基材料耐久性的第一道防线。本文研究纳米材料对水泥基材料抗渗性的提升效应与机理,建立纳米改性水泥基材料的抗渗模型与预测方法,对混凝土结构耐久性提升具有重要意义。水泥基材料因组成和配比不同而具有不同的初始微观结构,并对纳米材料的改性效应产生影响。因此,本文围绕纳米材料对不同水泥基材料的抗渗提升效应与机制,采用宏观性能测试、微观结构观测分析、理论计算与模拟相结合的研究方法,系统研究了纳米改性
在流化床的数值模拟中,欧拉-欧拉方法和欧拉-拉格朗日方法是两种最常用的方法。欧拉-欧拉方法中固相守恒方程使用颗粒动理学理论进行封闭,其中固相压力、粘度等参数的确定都依赖于弹性恢复系数,该参数的选取对于描述颗粒碰撞间动量传递和耗散至关重要。在欧拉-拉格朗日方法中,通过颗粒间碰撞作用实现相间动量的传递,忽略了气固两相湍动能传递对离散颗粒运动的影响。因此发展一种合理的描述颗粒碰撞和气固两相湍动能传递的两
Sn与Fe通过热扩散作用形成了FeSn2金属间化合物层,赋予镀锡板高耐蚀性的特点,但热扩散条件下FeSn2金属间化合物层的生长过程、机制与相关动力学参数尚未明确,同时通过电沉积法获得Sn-Fe合金的研究却少有报道,特别是对其镀层性能及电沉积过程的研究未见报道。本文的目的便是明确上述热扩散法与电沉积法获得锡铁合金的过程、膜层性能及其异同,进一步通过控制工艺参数来提高膜层性能。采用SEM、XRD、Ta
压缩感知理论在过去的十几年间得到快速的发展,不仅极大地丰富数字信号处理领域的研究内容,而且也为其他专业领域的研究提供一种新的方法和思路,具有广阔的应用前景。本文主要关注几类稀疏逼近函数来处理?0最小化问题,通过构造?0范数的非凸、非光滑逼近函数来设计新的求解算法。另外,本文利用?0范数的连续可微逼近函数来研究?0最小化问题的解与最小二乘解之间的关系。首先,利用?1范数的Moreau正则化函数的极小
由于具有特殊的表界面性质,超浸润材料在自清洁、微液滴操作、水油分离、防雾及防覆冰等多个领域已经得到广泛的应用。随着该领域不断地发展,复杂的使用环境对超浸润材料提出了更高的性能要求,发展具有多种功能的超浸润材料成为现今一个重要研究方向。作为一种新兴材料,石墨烯在构建多功能超浸润材料方面具有自身优势。但是目前已报道的石墨烯基材料多需要借助表面化学改性来实现其表面超浸润性,而这不可避免地影响了石墨烯的传
现代新型武器系统的发展对吸收剂提出了新的更高的要求,尤其对宽频吸收、强反射损耗和良好耐候性的要求非常迫切。铁磁金属颗粒独特的铁磁特性是实现宽频、高效吸收的基础。但是该类材料优良的电磁性能由于涡流效应、填充率低等问题在使用过程中却未能充分发挥。引入介电层对铁磁颗粒进行包覆以实现颗粒间充分隔离便是解决上述问题的有效途径。此外,铁磁/介电界面的存在有可能产生新的电磁损耗,进一步提高材料的电磁损耗效能。因
CRISPR-Cas适应性免疫系统为细菌和古细菌对抗噬菌体和质粒入侵提供了核酸序列特异性的防御机制,分为TypeⅠ至TypeⅥ六种类型,其中TypeⅡ、TypeⅤ和TypeⅥ系统的效应蛋白为单个蛋白组成,而其他类型Cas蛋白由多个亚基组成。在噬菌体感染细菌的过程中,细菌的Cas效应蛋白例如Cas9或者Cas12a在RNA指导下通过PI(PAM-interacting)结构域识别靶向dsDNA的PA
SiC陶瓷具有高强度、优异的抗氧化性和高温稳定性、良好的耐蚀性及较低的热中子吸收截面,在核电领域具有巨大的应用潜力,是第四代反应堆堆芯结构的备选材料之一。实现SiC陶瓷与核用Zr合金的连接,一方面可以克服陶瓷材料脆性大、难加工的缺点,扩大SiC陶瓷在反应堆中的应用范围,另一方面可以在不改变现有设计规格的情况下发挥其特性,提高反应堆运行安全性及发电效率。本课题基于该背景,采用钎焊的方法对SiC陶瓷与
机动车数量的快速增加以及城市化进程的扩展加剧了不断增长的交通需求与城市交通基础设施供应能力之间的矛盾。作为城市交通面临的巨大压力导致的社会问题之一,交通拥堵已经成为在交通管理领域中急需解决的严重挑战。能够缓解交通拥堵的最可行的措施是通过建立智能交通系统(Intelligent Transportation System,ITS),以提高交通管理和服务效率。智能交通系统由一系列能够为交通管理者、车辆
生活在软质沉积物上的贻贝主要以藻类为食物来源,它们是贻贝床生态系统的主要组成部分。贻贝本身具有很高的经济和营养价值,同时贻贝床生态系统非常适合模式形成的研究。因此,建立相关数学模型并研究其动力学性质是必要的,可以为预防贻贝床生态系统的坍塌提供理论支撑,具有非常重要的实际意义。本文主要对两类带有不同贻贝死亡率的贻贝-藻类反应扩散模型的动力学性质进行了研究,包括稳定性,分支以及稳态解问题。对于第一类模