纳米改性水泥基材料抗渗性与机理研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:wusic
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
抗渗性是水泥基材料耐久性的第一道防线。本文研究纳米材料对水泥基材料抗渗性的提升效应与机理,建立纳米改性水泥基材料的抗渗模型与预测方法,对混凝土结构耐久性提升具有重要意义。水泥基材料因组成和配比不同而具有不同的初始微观结构,并对纳米材料的改性效应产生影响。因此,本文围绕纳米材料对不同水泥基材料的抗渗提升效应与机制,采用宏观性能测试、微观结构观测分析、理论计算与模拟相结合的研究方法,系统研究了纳米改性水泥石、混凝土、纤维混凝土的抗渗性与机理,构建了考虑初始孔结构差异性的水泥基材料抗渗模型和预测方法。主要内容包括:首先,研究了纳米SiO2对水泥石抗渗性的提升效应与机制。通过量化分析纳米SiO2对水泥水化的促进作用,以及对水泥石孔结构的优化作用,揭示了纳米SiO2提升水泥石抗渗性的微观机制。研究发现,纳米SiO2对水泥石孔结构的优化作用随水灰比的降低而增强,揭示了纳米SiO2改性水泥石的抗渗提升效应受水灰比影响的机理。基于广义有效介质理论分析了纳米SiO2改性水泥石的抗渗性演化规律与影响因素,验证了纳米改性水泥石的抗渗提升效应与其初始微观结构的关系。其次,研究了纳米SiO2对混凝土抗渗性的提升效应与机制。通过背散射和核密度估计等方法观测并分析了混凝土基体和骨料界面区微观结构的变化规律,揭示了纳米SiO2改性不同水灰比和骨料级配混凝土的微观机制。基于递推矩阵方法构建了纳米改性混凝土的渗透模型,研究了可渗透单元减少导致的渗透概率变化规律,揭示了纳米SiO2对混凝土抗渗性的改性机理。研究发现,在低水灰比和骨料紧密堆积情况下,纳米SiO2对混凝土抗渗性的提升效应最为显著。其原因是当可渗透单元减少但连通性不变时,混凝土渗透概率的降低程度随可渗透单元渗透概率的降低而增强,在此基础上,纳米SiO2对低水灰比混凝土微观结构的显著优化进一步提升了混凝土的抗渗性。然后,研究了纳米SiO2/Ca CO3对碳纤维混凝土抗渗性的提升效应与机制。纳米SiO2/Ca CO3复掺可以显著改善碳纤维在混凝土中的分散均匀性,从而抑制了纤维搭接导致的孔隙率增加以及孔结构连通性增强的现象,有效降低了碳纤维混凝土的临界孔径。渗透概率的理论计算结果表明,连通性减弱导致的渗透概率降低程度因可渗透单元渗透概率的增大而提高,揭示了纳米SiO2/Ca CO3对碳纤维混凝土抗渗性的改性机理。最后,通过构建纳米改性水泥基材料的孔结构模型,模拟研究了不同孔结构水泥基材料内的渗透参数分布特征,得到了纳米改性水泥基材料的孔隙率、连通性与抗渗提升率的关系。建立了抗渗提升率与水泥基材料初始孔隙率及其降低值的耦合关系模型,从而确定了控制抗渗提升效应演化规律的特征孔结构参数关系,提出了纳米改性水泥基材料的理论模型。
其他文献
镁合金广泛应用于航空航天等领域,在服役中不可避免受到高速撞击,因此高速撞击条件下宏/微观损伤行为的研究对该类材料选用、结构设计和抗撞击性能评估均有重要意义。在此背景下,本研究综合应用计算机仿真和试验分析方法对AZ31B和AM60B镁合金的宏微观损伤特征进行了系统表征,在此基础上基于弹坑邻近区域内组织演化与撞击成坑过程位置/时序对应性对宏微观损伤的规律和机理进行了分析,阐明了相应的组织演化与损伤规律
在现代社会,断裂是困扰着先进材料和结构系统的安全使用主要问题之一,因此对材料的断裂行为的研究具有重大的理论和实际价值。纵观国内外研究现状,研究材料断裂行为的力学模型基本可以分为两类:基于断裂力学的离散裂纹模型和从连续介质力学出发的连续损伤模型。然而两类方法均存在着一定程度的不足。相场法由于不需要材料包含初始裂纹,无需引入裂纹起裂准则,可以连续表征材料从裂纹萌生、裂纹扩展到失效的全过程而在断裂力学领
随着可穿戴电子设备的蓬勃发展,柔性纤维型电池以其独特的一维结构和优越的灵活性迅速崛起。然而,目前柔性纤维电池的研究往往是着眼于电池的柔性展示而以损失其电化学性能为代价。为了满足可穿戴电子设备对高性能纤维电池日益增长的需求,设计开发兼具高柔性和高电化学性能的纤维电池迫在眉睫。二维过渡金属氧化物具有超薄的二维结构和新颖的物理化学性质,以之为基本构筑单元可以进行电池电极结构的设计与制造,受到了研究者的广
太阳系中存在多处有机物羽流喷发或沉积的地点,暗示了现存的行星地质活动和潜在的天体生物学环境。这些羽流喷口处覆盖着未曾触及的新鲜有机物和潜在天体生物学样本,逐渐成为天体生物学和地质学研究的重点,也因此成为国际深空探测任务重要的目标。但由于对于这些行星环境知识有限,特别是对于羽流喷口的具体坐标知之甚少,因此羽流探测必须具备自主定位羽流喷口的能力。为了将科学仪器部署在羽流喷口周围以采集沉积或浅层下潜在的
简谐近似作为一种常用的近似手段被广泛应用,然而在实际系统中,所观察到的现象往往与运用简谐近似所得到的结果不同,这是因为无论是在微观体系还是宏观体系,都存在着非简谐效应。作为非线性物理中最为重要的效应之一,非简谐效应会导致系统的物理性质产生巨大的变化。对于含有周期性重复单元结构的均匀晶格来说,非简谐效应可以引起系统的自局域化现象,其特征类似于简谐晶格中因杂质而形成的局域模,常被称为内禀局域模或者离散
21世纪以来,多智能体系统的协同控制问题已经成为研究热点,在工程中得到了日益广泛的应用,例如无人车/机的编队控制、多飞行器的姿态控制、移动传感器的区域覆盖等。一致性控制是协同控制问题的基础,所谓一致性是指智能体随着时间的推移,系统中某些期望的状态趋于一个共同的值,因此针对一致性控制的研究具有重要意义。为了实现多智能体系统的一致性控制,通常采用分布式控制策略,使得一组智能体通过局部通信的方式协作完成
锂硫电池正极理论质量比容量高达1675 mAh g-1,具有很好的开发和应用前景,得到了世界范围内的广泛关注。然而,锂硫电池的发展仍然面临着诸多问题和挑战,其中放电中间产物多硫化锂的溶解引起的穿梭效应和充放电过程中反应动力学迟缓的问题尤为严重。针对以上问题,本论文通过对碳材料的掺杂以及复合改性,设计四种高性能硫正极载体材料。以低成本的海苔为生物质原料制备氮、氧共掺杂的生物质碳材料(ANOC)。氮、
多铁性材料可以同时实现力-电荷-自旋的多重耦合因而允许通过外场来控制其铁电性和铁磁性,相比于传统的铁电存储和磁记录材料,多铁材料在性能控制上具有更高的自由度,在信息存储领域具有广泛的应用前景。在多铁材料体系中,由薄膜构成的异质结和复合薄膜满足了对器件集成化和微型化的要求,且在室温下能够表现出磁电耦合性能,研究多铁材料中两相复合方式对磁电效应的作用,具有重要的意义。本文以Co Fe2O4/Pb(Mg
使用机器人对真实场景进行三维重建具有广阔的应用场景,如灾难与救援现场、行星探测和工厂测绘等。现阶段,存在多种SLAM方法可以实现此功能,但大多侧重于人为控制机器人进行定位和建图,使最终的建图效果受限于操作人员的个人经验。本课题主要研究在没有人为干预的情况下,多机器人系统在完全未知的环境中根据视觉传感器的感知情况,协同自主地规划自身的移动轨迹,最终完成对整个环境的三维重建。涉及视觉SLAM方法、动态
GaN是一种典型的宽禁带半导体,一直是凝聚态物理和材料物理研究的重点。GaN通过掺杂可实现n型或p型导电,以及不同波段包括可见光和紫外光范围的光致发光,因此广泛应用于发光二极管和激光二极管等领域,具有巨大的科学和应用价值。GaN的半导体行为和光电响应往往由点缺陷的相关过程决定。尽管经过了多年的理论和实验研究,学术界对这些点缺陷过程的理解仍然存在很多争议。理论计算描述半导体中带电缺陷的主要困难是如何