基于卷积神经网络的膝关节半月板撕裂计算机辅助诊断

来源 :天津理工大学 | 被引量 : 0次 | 上传用户:qiuyueguangxuan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
半月板撕裂是膝关节疼痛的常见原因之一,也是膝盖机械性疾病中最常见的疾病。它会影响患者的日常生活,如果没有及时治疗会导致关节损伤,甚至会诱发骨关节炎等其它并发症,因此对于半月板撕裂的早期诊断至关重要。随着医学成像技术的发展,磁共振成像(MRI)技术凭借无创、敏感性强、分辨率高等优势,目前已经广泛应用于半月板损伤的诊断及研究中。然而,受医生临床经验等主观因素的影响,半月板的诊断常常出现漏诊或误诊现象。近年来,随着计算机技术的突破性发展,计算机辅助诊断在医学影像处理领域取得了较快进展,它在提高工作效率与减少漏诊等方面发挥了重要作用。与此同时,由于卷积神经网络具有良好的自学习能力与预测能力,目前已广泛应用于图像处理领域。针对上述问题,本文以安徽医科大学第一附属医院提供的患者膝关节磁共振影像为研究对象,利用卷积神经网络提出了一种半月板的计算机辅助诊断方法来帮助医生快速、准确地做出决策。本论文的主要创新工作如下。(1)膝关节半月板组织的分割:提出一种基于卷积神经网络的半月板自动分割方法,该方法主要由膝关节半月板影像预处理算法和分割网络模型两部分组成。前者用于降低运算成本以及突出半月板的比例,具体实现方法为利用霍夫变换算法确定半月板的局部区域,初步缩减图像尺寸至原来的1/7,随后利用伽马校正算法增强图像的对比度,进而突出半月板组织的细节特征。后者用于完成对半月板的精准分割,具体实现方法为在传统U-net网络中引入Inception模块建立多尺度U-net(Multi-size U-net)网络,该网络融合了不同尺度的特征信息,能够有效的识别细微的特征。通过实验表明,本文提出的方法缓解了其它组织干扰分割的问题,提高了分割的准确性,平均戴斯相似性系数达到94.22%。(2)半月板撕裂程度的分类:提出一种基于三层级连接残差网络自动检测半月板撕裂程度的方法,该方法主要由感兴趣区域提取算法和分类网络模型两部分组成。前者是在上述分割结果的基础上,进一步提取感兴趣区域。后者通过三层级连接残差网络实现了半月板撕裂程度的预测。通过多组对比实验证明了分类网络结构的有效性,实验结果得到半月板撕裂程度分类的准确率为96.36%,F1分数为96.54%,表明本文提出的方法对半月板撕裂程度的检测有精准的预测效果。
其他文献
学位
永磁直线同步电机(PMLSM)采取将能量转化为机械能的方法,取消物理减速与传递部件,如丝杠、皮带和链条,由于具有快速响应、高精准度、高功率密度等优点,在高精数控机床、工业传输等产业得到充分利用。分数阶微积分(FOC)拥有消减静态误差、强鲁棒性、存储复杂信息和描述记忆的特点,采取分数阶控制可以在一定范围内提高系统性能。本文针对PMLSM的直接推力控制(DFC)技术展开进一步的分析,提高PMLSM速度
随着人们对自主水下航行器高机动性、长时间续航、节能甚至隐身的要求越来越高,基于生物系统思想的仿生两栖机器人在适应水下、陆地和空中环境中表现出更好的特性,并且两栖机器人在水域巡逻、军事侦擦、环境监测、资源开发等方面被广泛应用。而路径规划是实现这些任务不可或缺的重要技术。仿生机器人的核心问题包含了路径规划,同时也是体现人工智能的重要因素。路径规划则是在充满各种各样的障碍物环境中,能够找到一条从起始点开
为了实现碳达峰、碳中和的目标,开发新型清洁能源是未来可持续发展的关键。作为清洁能源转化利用的重要载体,燃料电池技术由于其清洁、高效、功率密度高等特点,已成为传统化石能源动力的理想替代者,其中氢燃料电池技术是当前发展的主流方向。针对当前氢燃料电池存在的成本高、稳定性差的问题,降低电极材料中Pt族金属用量、提高催化活性及结构稳定性是目前氢燃料电池电极催化剂研究的关键。基于纳米多孔金属薄膜具有的独特的超
随着深度学习技术的日益发展,计算机视觉逐渐成为了人工智能领域最为重要的研究领域之一,目标检测是计算机视觉领域中极具挑战性的核心研究方向。目标检测是指利用视觉信息中的高级特征来对目标的类别、尺寸与位置进行预测。在二维与三维场景中运用目标检测技术已经是安全防控、智能驾驶等行业的关键一环。为了在不同场景中实现目标检测技术精度与速度的平衡,本文对基于深度学习的2D/3D场景目标检测算法进行了研究与分析。论
La2CaB10O19(LCB)晶体是一种具有很高潜在价值的硼酸盐非线性光学晶体,具有较大的非线性光学系数、激光损伤阈值高、不潮解以及紫外波段透过率高等优良性能。LCB的I类相位匹配的最短倍频输出波长为288nm,限制了其在紫外波段应用,通过掺杂离子半径较大的Sr2+来调节晶体的双折射,实现更短波长的倍频输出以实现在四倍频激光的输出。本论文对LCB进行Sr2+掺杂,生长获得大尺寸Sr:LCB单晶,
在实际应用中,金纳米颗粒(Au NPs)的表面效应导致纳米颗粒的团聚生长和形状变化广泛存在。然而到目前为止,相关的研究很少提供团聚过程中原子水平的运动信息,对原子尺度上Au NPs微观结构演变过程的认识仍不明确,这将不利于Au NPs的结构优化和性能调整,因此利用原位技术追踪在相关条件下纳米颗粒发生的动态变化非常必要。本文利用高时空分辨率的原位透射电镜技术,对原位气相条件下Au NPs的动态演变过
风力发电的快速发展为解决能源危机和环境污染问题带来了可能性,但分布式的风力发电机组的大量接入会对电网的稳定性带来挑战,故电网对风力发电机组的接入提出了要求,其中,低电压穿越(LVRT)能力是一项重要的指标。电网电压的故障跌落会造成直流母线电压的波动,严重情况下可能会破坏变流器和直流母线器件等,甚至造成永磁直驱风力发电机(PMSG)的脱网运行。故文中为了提高直流母线电压的暂态特性,增强PMSG的LV
模数转换器(ADC)是连接模拟世界与数字设备的桥梁,它的性能逐渐成为模数混合系统性能的决定因素。随着5G通信技术的到来以及物联网时代的发展,对高速高精度ADC提出了更高的性能要求。逐次逼近型ADC具有低功耗的优势,但速度受到结构的限制,精度受限于电容失配以及热噪声;流水线型ADC具有高速高分辨率的优势,但功耗大,分辨率每增大1bit,余量放大器多一级,相应的功耗也增大一倍。而流水线逐次逼近型(Pi
调度问题一直伴随着实际生活的方方面面,合理的调度策略对工业、医疗、物流、航空等各个领域的管理至关重要。随着近几年COVID-19的爆发,引发了各地医疗卫生机构对预约调度的思考,大型医疗机构为避免交叉感染采取线上预约的方式进行。但是大部分医疗机构只是简单的将先来先服务策略变为线上操作,并没有考虑患者之间的差异和随机事件的干扰。这常常会带来医疗机构运行混乱、医疗资源的浪费和医患关系的紧张。而要解决这个