地震信号重构的相位自适应校正方法研究

来源 :东北石油大学 | 被引量 : 0次 | 上传用户:ghostlei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本论文是研究有关分频接收的地震信号进行宽频信号保真重构技术的,主要研究宽频信号重构中相位自适应校正方法,编制处理模块,对分频接收现场试验资料进行相位自适应校正处理和信号重构,以期获得宽频保真的地震记录。本论文涉及的信号重构是将高、低频检波器同步接收的地震记录重构成宽频地震记录,主要解决重构过程中有关相位校正的适应性问题。通过采取检索文献分析、优选相位校正方法、推导用于编程计算的相位自适应校正公式、修改分频地震信号重构代码以及对现场试验数据进行处理分析等技术措施,解决了相位校正的适应性问题,取得了技术创新成果:在固定参数校正的信号重构技术基础上,推导出了相位自适应校正的三参数求取公式,形成了相位自适应校正算法,并成功编程实现,通过分频接收数据的基于相位自适应校正的宽频信号重构处理获得了宽频保真的地震记录,证实了新的地震信号重构技术具有很强的适应性。本文的研究取得了较好的效果,提高了地震信号重构中相位校正的适应性,为以后的宽频地震信号重构处理奠定了坚实基础。
其他文献
目的:分析乳腺癌患者血清中瘦素、25-羟维生素D(25-hydroxyvitamin D,25(OH)D)的表达水平,探讨二者与乳腺癌的关系。初步探讨新辅助化疗是否对二者水平变化有影响及新辅助化疗疗效是否与二者有关联。方法:收集经过临床组织病理学确诊的原发性乳腺癌患者82例和乳腺良性疾病患者51例的血清和相关的临床资料。采用酶联免疫吸附法(Enzyme-linked immunosorbent a
我国寒区面积分布广阔,约占国土面积的四分之三,近年来随着公路铁路等基础工程设施的建设与发展,寒区岩质边坡的冻害问题逐渐凸显并引起重视,因此,开展冻融循环条件下岩质边坡失稳机理和防护措施研究对保障寒区基础工程设施的运营建设具有重要意义。本文以河北省承德市北部山区某高速公路路堑白云岩高边坡为依托,首先开展了50次的白云岩室内快速冻融循环试验以及不同循环次数下的声波测试试验和单轴压缩试验,然后采用理论研
本文研究了材料属性沿径向任意变化的功能梯度圆筒受轴对称温度荷载和机械荷载时的稳态和瞬态热弹性问题。基于热传导方程、热弹性方程、平衡方程,并引入热流密度,建立了圆筒
连接体是固体氧化物燃料电池(SOFC)的关键组成部件之一,为避免其工作时发生高温氧化腐蚀而导致电性能下降,需在连接体表面涂覆保护性涂层,尖晶石结构氧化物涂层因为耐高温性
以该构造带的191口钻遇沙四段的井作为研究对象,测井、地震和地质资料为基础,开展地层对比、储层分析以及含油气分析工作,结合地质资料和试油开发情况,对该地区的构造特征、
通过对锡黄铜棒成分及熔炼、挤制工艺过程研究,掌握了锡黄铜棒熔炼、挤制关键技术,优化生产工艺,提升锡黄铜熔炼、加工技术水平,进一步优化锡黄铜棒材性能,使物理性能指标达到或超过进口锡黄铜合金棒材。本文采用加入可提高材料性能的金属元素。优化合金成分配比,优化熔炼工艺,优化挤压工艺确定相关工艺参数。采用电子万能实验机、洛氏硬度检测仪、超声波检测仪、金相分析仪等设备研究了原料配比及熔炼方法对合金元素物理性能
近年来,能够实时检测食品新鲜度的智能包装受到越来越多的关注。花青素(ANT)是一种具有pH响应的天然安全的水溶性材料,在食品新鲜度检测方面有一定的应用潜力。聚乳酸(PLA)因其来源丰富、可生物降解、易加工成型等特点,是目前包装薄膜方向的研究热点之一。将ANT应用于PLA薄膜,构建安全可靠的智能显色薄膜,将是对食品新鲜度检测的智能包装的新探索。但是,疏水性PLA无法与亲水性ANT共混成膜。因此,本文
锌镍电池具备良好的发展应用前景,其应用热潮的到来必会引起人们对其回收问题的关注,然而目前关于锌镍电池回收方面的研究较少,尤其是锌负极的回收再生方面还较为空白。本文通过查阅国内外相关文献,提出了一种锌镍电池回收再生思路,并对该思路下锌负极的回收再生进行了系统的研究,包括:废负极活性物质混合粉末的硝酸浸出、除铜、负极材料锌铝水滑石和锌酸钙的再生及电化学性能测试。(1)采用硝酸对废负极活性物质混合粉末进
在发酵纳豆类食物的过程中,纳豆发酵菌能够生产出一种碱性丝氨酸蛋白酶,即纳豆激酶(Nattokinase,NK)。纳豆激酶能够有效的溶解纤维蛋白(人体内血栓的主要成分),其作为一种新
除虫菊素又称天然除虫菊素,是除虫菊花(Pyreyhrum cineriifoliun Trebr)中分离萃取出的具有杀虫效果的成分。它由除虫菊素I(pyrethrins I)、除虫菊素II(pyrethrins II)、瓜叶菊素I(cinerin I)、瓜叶菊素II(cinerin II)、茉酮菊素I(jasmolin I)、茉酮菊素II(jasmolin II)6种组分组成,是一种典型的神经毒剂