【摘 要】
:
选择合适的函数和方法来描述和刻画实际对象是逼近论甚至整个应用数学的一个重要课题,在实际中有着重要和广泛的应用.该文主要研究了利用一种著名的径向函数——Multiquadric
论文部分内容阅读
选择合适的函数和方法来描述和刻画实际对象是逼近论甚至整个应用数学的一个重要课题,在实际中有着重要和广泛的应用.该文主要研究了利用一种著名的径向函数——Multiquadric(MQ函数)——做函数逼近和散乱数据拟合的问题.类似于B-样条,可以利用MQ函数定义一种样条函数,称之为MQ-B-样条,我们主要利用三次MQ-B-样条构造了若干个拟插值算子,细致地讨论了它们的逼近能力,并且发现除了良好的逼近能力外,这些拟插值算子还具有很好的保形性质,该文也详细地做了介绍.另外,该文利用自适应抽样算法给出了一种径向基函数插值方法,即自适应SMQ-B-样条插值方法,通过数值例子和与其它已有方法的比较,我们发现它能够更好地满足我们的要求.
其他文献
随着差分方程在经济领域(如金融证券)、人口理论、生物医学、物理和自动控制等领域的广泛应用,对于差分方程振动性的研究引起了人们的广泛关注.该文主要研究了下列三类差分方
该文主要目的是引入K-泛函K(f,t)来研究Bernstein-Durrmeyer算子的强逆不等式,由此不等式,我们推广了Bernstein-Durrmeyer算子关于ω(f,t)的逆结果.
该文主要研究第一、第三临界情形下的几类特殊的四次多项式微分系统的全局拓扑结构,以及一类余维2的高次退化的平面多项式系统的全局结构与分岔.在文献[1]中,主要考虑了第一
Vlasov-Poisson系统是描述无碰撞粒子通过它们共同产生的场相互作用的动力学模型.它在很多领域的研究中有着重要的应用,比如在天体物理、半导体和等离子体等领域的应用. 经典
在本文中,考虑了三维空间中耗散的KGS方程组的时间周期解的存在性问题iψ+△ψ+iαψ+φψ=f,(0.1)φ+(1-△)φ+βφt=|ψ|+9,x∈Ω t∈R(0.2)(ψ,φ)(x,t)=(ψ,φ)(x,t+T),(
该文利用H-Galerkin混合有限元方法讨论了两类问题-抛物型Sobolev方程初边值问题和双曲型热传导方程初边值问题的数值模拟.全文共分三章.第一章为引言部分.第二章.流体在穿过
气体动力学是统计力学的重要组成部分,而统计力学的基本出发点就是对气体的微观状态以及人们对其微观状态的观测进行统计平均,并用统计的方法处理问题.它认为在任意给定的时