粉末冶金法制备MWCNTs/Cu-Ti复合材料的组织及性能研究

来源 :西安理工大学 | 被引量 : 0次 | 上传用户:amuro111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高速发展的社会和现代工业对金属基复合材料提出了越来越高的性能要求,将具有独特结构和优异性能的CNTs作为强化相,通过合适的工艺方法来制备CNTs增强Cu基复合材料,以期得到高强度、高耐磨性等优异综合性能的铜基复合材料,这将具有广阔的应用前景。本论文从目前CNTs增强Cu基复合材料研究存在的问题出发,以粉末冶金的方法制备了 MWCNTs/Cu-0.5%Ti复合材料,探究了最佳的球磨工艺和烧结温度,分析了强化相MWCNTs的加入量和基体合金化元素Ti对复合材料组织及性能的影响,探究了复合材料的断裂方式及MWCNTs的强化机理。实验结果主要有以下几点:(1)在400r/min的转速下对Cu-0.5%Ti基体粉末球磨8h,球料比20:1,再结合对MWCNTs分散液的超声波处理和机械搅拌,在950℃下进行热压烧结所制得的MWCNTs/Cu-0.5%Ti复合材料致密性和界面结合性最好,MWCNTs的分散最为均匀,材料性能最佳。(2)伴随着增强相MWCNTs加入量的增多,MWCNTs/Cu-0.5%Ti复合材料的致密度和导电率都有一定程度的降低,而硬度表现为先升高后降低的变化趋势,总的来说,当MWCNTs添加量为0.2%时,复合材料的综合性能最佳,致密度为98.20%,导电率为84.45%IACS,硬度为 92HB。(3)通过对比分析可知,在MWCNTs/Cu复合材料中,因基体和增强体之间极差的界面润湿性,导致增强相MWCNTs只是机械性地夹杂在复合材料之中,界面结合强度极差,复合材料中存在较多的孔隙,继而导致复合材料整体的性能不佳;而对于MWCNTs/Cu-0.5%Ti复合材料来说,因为有基体合金化元素Ti的加入,通过在复合材料的界面处形成TiC,极大地改善了增强相与基体之间的界面结合性能,提高了界面结合强度,从而更充分地发挥了 MWCNTs的强化效果。(4)对MWCNTs/Cu-0.5%Ti复合材料进行冷轧+退火工艺处理后,其致密度和硬度都有不同程度的提升,对复合材料进行拉伸试验可以得出,Ti的添加有效地强化了复合材料的界面结合,当MWCNTs添加量为0.2%时,MWCNTs/Cu-0.5%Ti复合材料的抗拉强度可达395MPa,伸长率达11.8%。(5)通过对复合材料的摩擦磨损实验总结得出,适量的MWCNTs可有效地降低材料的摩擦系数和磨损失重,改善复合材料的耐磨性。
其他文献
被子植物在白垩纪时期的快速辐射演化使著名生物学家达尔文迷惑不解,留下了古生物学界著名的达尔文"讨厌之谜"。被子植物(又称开花植物)的多样化是生命史上改变全球生态系统的重要事件之一,引起了昆虫、两栖动物、哺乳动物、早期鸟类和其他分支的多样化。介于一亿三千五百万年前到六百五十万年前之间,被子植物快速辐射统治了白垩纪末许多陆地环境,并取代了裸子植物在陆地生物圈的主要地位。
期刊
随着当前设备、工艺和材料的快速更新,对于工程机械部件的精度、性能和服役条件提出了较高的要求,单一材料已经无法满足工程需求。铜合金和合金钢复合结构因具备优异的低温韧性、耐腐蚀性和高强韧性,在船舶车辆、压力容器和武器装备等方面发挥着重要角色。然而,铜和钢之间线膨胀系数和导热系数相差较大,这也无形中增加了两者的连接难度。使用焊接方式制备铜/钢复合结构,焊接接头中热影响区粗化和宏/微观裂纹将会严重降低力学
石墨烯作为一种二维的层片状材料,具有优异的物理性能和力学性能,并作为增强相在复合材料中具有广阔的应用前景。目前,国内外关于石墨烯作为增强相增强铜基复合材料的研究很多,然而石墨烯的比表面积大,在金属材料中容易发生团聚,并不能充分发挥石墨烯的性能优势。当前发展的核壳结构因其特殊的包覆结构,同时兼具核心和外壳两者的性能特点,被广泛应用于催化、光子晶体、药物医疗、电化学储能等领域,成为近年来研究的热点,而
随着国家科学技术的发展,电工领域、军工领域、电子领域日新月异,钨铜复合材料作为应用于其关键部位的零件,为了使钨铜复合材料能够更好的应用在这些领域,而且应用于更加严苛的服役环境,对制备优异综合性能的新型钨铜复合材料有更高的要求。本文采用粉末冶金法制备钨铜复合材料,首先,根据钨铜复合材料的性能特点选择用于增强钨骨架性能的添加相,通过已有研究选择加入x wt.%ZrC或NbC(x=0.5,2.0,4.0
随着能源需求的不断增长,长距离油气运输越来越重要,但频繁发生的油气泄漏、输送管爆炸事故,使得油气运输的安全性更引起了人们的关注。腐蚀开裂是引起油气管道事故的主要原因,为了提高管道耐腐蚀性,人们曾试图采用纯不锈钢、钛合金等材料用于油气管道制备,但高昂的成本使得人们不得不另寻途径。钛-钢双金属复合管集钛、钢优点于一身,极好的解决了该问题,但钛与钢的物理、化学特性差异过大,使得其难以熔焊对接。目前,国内
近年来,5G的普及使人们在信息化道路上迈出了崭新的一步,在综错复杂的信息网络中,对信息进行快速、稳定的存取成为了发展信息产业的关键。为了提高存储密度和存储稳定性,研究者们将目光投向了磁存储技术。其中,具有垂直磁各向异性(Perpendicular magnetic anisotropy,PMA)的存储介质可避免小尺寸下带来的超顺磁效应,从而提高存储密度与存储稳定性。因此,在磁记录介质中实现具有较强
AgO具有极强的杀菌能力、抗菌广谱性、理想的禁带宽度和高的电池比容量,在饮用水净化、耐药细菌杀灭、光催化和电池等领域具有潜在的应用前景。但是,目前制备的AgO主要是棒状、片状、圆形等零维、一维或二维纳米颗粒,存在比表面积较小、颗粒易团聚、反应位点聚集等问题,导致其杀菌活性和光催化性能等性能降低。将材料制成中空多孔结构有望解决上述问题。因此,本文以价格低廉、结构稳定、易于通过碱浸泡去除的气相SiO2
碳化硅(SiC)颗粒增强铝基复合材料(Aluminum Matrix Composites,AMCs)因综合了铝基体与SiC增强相各自优异的性能,而具有高的比强度和比模量、良好的导电、导热性以及优异的抗疲劳和抗冲击性能,在航空航天、汽车轻量化等领域展现出广阔的应用前景。近年来,随着AMCs制备技术的持续发展,选区激光熔化技术(Selective Laser Melting,SLM)作为一种可整体成
编制工程量清单的主要目的是控制建设工程的投标价格,影响投标报价以及竣工后的结算价格。工程量清单模式在项目招投标中的应用,不仅为建设单位节约了建设成本,也为投标企业创造了一个公平、公正的竞争平台,更也有利于施工单位控制工程造价,减少资源浪费。目前在开展工程量清单及控制价编制过程阶段还存在一些问题,要求对此进行分析研究,希望可以提高大家对招标阶段工程量清单及控制价编制要点的理解和认识有所帮助。
硬脆材料如碳化硅、单晶硅、蓝宝石以及光学玻璃等因具有高硬度、低摩擦性、高耐磨性和良好的化学稳定性,广泛应用于现代装备领域,但硬脆材料因其高的硬度和脆性,导致切割加工变得十分困难。目前,硬脆材料大多数采用往复式固结金刚石磨粒线锯切割技术进行切片,该技术具有切口窄、材料去除率高以及报废率低等优点。但线锯在往复式切割过程中,即使工艺参数(如工件与线锯的接触弧长、线锯张力等)恒定,切割力仍不断发生变化,导