ZrC/NbC颗粒增强钨铜复合材料的组织及性能研究

来源 :西安理工大学 | 被引量 : 0次 | 上传用户:cbgch
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着国家科学技术的发展,电工领域、军工领域、电子领域日新月异,钨铜复合材料作为应用于其关键部位的零件,为了使钨铜复合材料能够更好的应用在这些领域,而且应用于更加严苛的服役环境,对制备优异综合性能的新型钨铜复合材料有更高的要求。本文采用粉末冶金法制备钨铜复合材料,首先,根据钨铜复合材料的性能特点选择用于增强钨骨架性能的添加相,通过已有研究选择加入x wt.%ZrC或NbC(x=0.5,2.0,4.0),采用不同混粉方式(V型混料机混粉、行星球磨机球磨、研钵研磨)制备复合材料,研究表明亚微米钨铜复合材料的密度、压缩/拉伸强度、摩擦磨损、耐电弧烧蚀等性能表现优异,研究不同含量ZrC或NbC颗粒对亚微米钨铜复合材料的组织、电导率、硬度、密度、室温/高温压缩性能改善情况;其次,制备钨铜复合材料的原始粉末形貌也对复合材料的性能有很大的影响,通过采用与前文粉末形貌不同的球形粉末制备钨铜复合材料,研究初始粉末形貌对材料组织及性能的影响;最后,加入ZrC颗粒增强球形初始粉制备的钨铜复合材料,通过加入不同含量诱导铜粉提升材料密度,研究对复合材料性能的影响:(1)加入x wt.%ZrC(x=0.5,2.0,4.0)增强钨铜复合材料,采用三种不同的混料方式混合初始粉末。对组织均匀性研究,发现V型混料机和行星球磨机球磨制备的复合材料组织均匀性良好,对材料进行导电率、硬度、密度、室温压缩变形、高温压缩变形测试,综合测试的各项性能得出使用V型混料机制备的0.5ZrC-WCu复合材料具有最佳的综合性能。(2)加入xwt.%NbC(x=0.5,2.0,4.0)增强钨铜复合材料。也采取三种不同的混料方式制备,根据扫描得到的显微组织均匀性分析可知,行星球磨机球磨制备的复合材料组织均匀性最好,加入2.0wt.%NbC可以使材料具有优异的综合性能,采用球磨制备的复合材料电导率为18.04 MS/m,硬度为233.25 HB,密度为13.45 g/cm3,室温压缩强度为1111.18 MPa。(3)通过前两章的实验所得到的数据对比研究可知,采用V型混料机制备的0.5wt.%ZrC-WCu复合材料综合性能优异。本章首先研究采用球形初始粉末制备钨铜合金,分析可知球形粉制备的复合材料比现有研究加入碳化物增强的材料性能有所提升;为改善材料的密度,所以采用不同含量诱导铜粉制备0.5wt.%ZrC增强球形粉制备的钨铜复合材料,实验结果表明,随着诱导铜粉的减少,电导率下降,复合材料密度、硬度逐渐上升,室温拉伸/压缩逐渐上升。
其他文献
孤立波作为一种良好的信息载体,在无损检测领域拥有广阔的应用前景。本文基于一维颗粒链中的高度非线性孤立波与损伤复合材料板的耦合作用,探究损伤复合材料板的特征参数对回弹孤立波的影响,通过分析孤立波在待测结构表面的反射特性以达到无损检测的目的,具体研究内容如下:(1)研究颗粒链与复合材料层合板的耦合作用:基于Hertz接触定律得到相邻颗粒之间接触力和压缩量的关系,利用经典牛顿定律推导得到了一维均质颗粒链
在经济快速发展,商业繁华及城市化进程加快的过程中,城市用地越来越紧张,各种超高层建筑拔地而起,因此带来的消防隐患问题也日渐突出。超高层建筑受其建筑特点的限制,一旦发生火灾,往往后果极其严重。针对超高层建筑火灾特点和灭火难点,本文结合机械臂良好的运动性能,进行了超高层建筑智能灭火救援系统设计,及其数字动画展示研究,以期对超高层建筑的灭火救援提供参考和借鉴。本文的研究内容如下:(1)对超高层建筑智能灭
本文利用40 μm的AZ91D合金雾化球形粉和单壁碳纳米管(SW-CNTs),通过高能球磨、往复挤压和正挤压工艺制备了 xSW-CNTs/AZ91D(x=0wt%、0.5wt%、1.0wt%、1.5wt%)复合材料丝材,研究了 SW-CNTs含量对复合材料丝材组织与性能的影响,分析了复合材料的强韧化机制和摩擦磨损机制。利用该丝材通过电弧增材制造技术(Wire arc additive manufa
石墨烯纳米片(Graphene Nanoplatelet,GNP)由于具有超高强度和优异的导热、导电性等特性,在与铜(Cu)及其合金复合制备的铜基复合材料(Copper Matrix Composites,CMCs)不仅有望能够保持Cu基体的导电性,同时能够实现GNP和Cu的协同强化作用,从而满足电子工业领域对高强高导材料的性能要求。然而,如何促进GNP的分散以及改善GNP与Cu之间的润湿性是目前
电子设备和无线通信技术的迅速发展和广泛使用产生了大量的电磁波,不仅影响了设备的运行,而且会对人体健康造成危害。因此,轻量化且高性能的微波吸波材料对于控制电磁污染和保护人体健康来说是必不可少的。作为一种典型的新型二维材料,Ti3C2Tx MXene独特的层状结构、大的比表面积、丰富的天然缺陷和表面官能团使其成为一种很有潜力的微波吸收材料,但其单介电损耗机制和窄吸收带宽限制了其实际应用。为了解决上述问
气液两相混输泵叶顶间隙内的流动对泵的水力性能而言至关重要,较小的间隙能够改善泵的性能,而间隙过大容易导致泵性能下降、压力脉动增强、振动加剧,甚至影响其运行稳定性,因此开展气液两相混输泵叶顶间隙内部流场的研究有重要意义。本文以转速n为3500r/min、流量Q为36.6m3/h的气液两相三级混输泵为研究对象,通过改变叶片宽度,得到了四种叶顶间隙方案:0mm、0.5mm、1.0mm、1.5mm,利用A
钢铁材料具有优良的综合性能,高碳钢作为应用最为广泛的一类工模具钢具有良好的强度、硬度与耐磨性,但日益严苛的工作环境要求其提高强度的同时增强抗弯能力,减少断裂失效,因此对于高碳钢的强韧化改善具有重要的现实意义。本文以T10钢片、铌粉、石墨粉、铁粉为原料,通过球磨混粉与冷压成型得到增强层,再与钢片进行原位热压烧结(1220℃ × 6 h)制备出NbC/Fe增强钢基层状复合材料,实现了颗粒富集的NbC硬
被子植物在白垩纪时期的快速辐射演化使著名生物学家达尔文迷惑不解,留下了古生物学界著名的达尔文"讨厌之谜"。被子植物(又称开花植物)的多样化是生命史上改变全球生态系统的重要事件之一,引起了昆虫、两栖动物、哺乳动物、早期鸟类和其他分支的多样化。介于一亿三千五百万年前到六百五十万年前之间,被子植物快速辐射统治了白垩纪末许多陆地环境,并取代了裸子植物在陆地生物圈的主要地位。
期刊
随着当前设备、工艺和材料的快速更新,对于工程机械部件的精度、性能和服役条件提出了较高的要求,单一材料已经无法满足工程需求。铜合金和合金钢复合结构因具备优异的低温韧性、耐腐蚀性和高强韧性,在船舶车辆、压力容器和武器装备等方面发挥着重要角色。然而,铜和钢之间线膨胀系数和导热系数相差较大,这也无形中增加了两者的连接难度。使用焊接方式制备铜/钢复合结构,焊接接头中热影响区粗化和宏/微观裂纹将会严重降低力学
石墨烯作为一种二维的层片状材料,具有优异的物理性能和力学性能,并作为增强相在复合材料中具有广阔的应用前景。目前,国内外关于石墨烯作为增强相增强铜基复合材料的研究很多,然而石墨烯的比表面积大,在金属材料中容易发生团聚,并不能充分发挥石墨烯的性能优势。当前发展的核壳结构因其特殊的包覆结构,同时兼具核心和外壳两者的性能特点,被广泛应用于催化、光子晶体、药物医疗、电化学储能等领域,成为近年来研究的热点,而