论文部分内容阅读
在黎曼流形中,黎曼曲率张量反映了该黎曼流形的内在性质,也是引入各种曲率的基础.在本文中,我们通过黎曼曲率张量的调和性来研究单位球中超曲面的情形.设M是Sn+1中的超曲面,其黎曼Ricci曲率张量满足Rij,k-Rik,j=0,本研究利用这个性质可获得三个超曲面的刚性定理,并对这三个刚性定理进行了论证。