优化端点条件的平面二次均匀B样条插值曲线

来源 :浙江大学学报:理学版 | 被引量 : 0次 | 上传用户:maodaiwan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在利用反求法构造B样条插值曲线时,往往需要选取端点条件。因此,可对端点条件进行优化选取,使得构造的B样条插值曲线满足特定要求。提出了一种利用曲线内能极小选取平面二次均匀B样条插值曲线端点条件的算法。首先给出了二次均匀B样条插值曲线分控制顶点与首个控制顶点(即端点条件)的递推关系式;然后给出了利用曲线内能极小优化选取首个控制顶点的算法,证明了利用该算法构造的C^(1)连续二次均匀B样条插值曲线为保形插值,并通过数值算例证明了算法的有效性;最后,为便于实际应用,基于MATLAB平台设计了算法所对应的图形用户界
其他文献
给定2个图G_(1)和G_(2),设G_(1)的边集E(G_(1))={e_(1),e_(2),…,e_(m1)},则图G_(1)⊙G_(2)可由一个G_(1),m_(1)个G_(2)通过在G_(1)对应的每条边外加一个孤立点,新增加的点记
研究了修正Bernstein算子对奇性函数的加权逼近性质,得到其逼近定理,建立了修正Bernstein算子加Jacobi权的Voronovskaja型估计,值得注意的是,Jacobi权函数中的参数a,b无上界
利用平面动力系统方法的分支理论,研究了Boussinesq方程,通过对Boussinesq方程进行行波变换,得到了相应行波系统的首次积分和平衡点,给出了不同参数条件下的相图,证实了Bouss
求根问题在计算机图形学、机器人技术、地磁导航等领域应用广泛。基于重新参数化方法(reparamaterization-basedmethod,RBM),给出了用于计算给定光滑函数在某区间内唯一实根
研究了度量G-空间中拓扑共轭不变性和映射迭代不变性,给出了度量G-空间中强G-跟踪性的概念,并举例说明了强G-跟踪性与G-跟踪性的不同,利用拓扑共轭和映射迭代的性质,得到(1)