论文部分内容阅读
一题多解是开发智力、培养能力的一种行之有效的方法,它对沟通不同知识间的联系,开拓思路,培养发散思维能力,激发学生的学习兴趣都十分有益.在教学中,恰当而又适量地采用一题多解的方法,进行思路分析,探讨解题规律和对习题的多角度“追踪”,能“以少胜多”地巩固基础知识,提高分析问题和解决问题的能力,掌握基本的解题方法和技巧.
数学是思维的体现,解决问题是学生学习数学的目的,因而如何通过解题活动来培养学生良好的思维能力,应是数学教学的中心问题。但过多过密盲目的解题,不仅不会促进思维能力的发展、技能的形成,反而易使学生疲劳,兴趣降低,窒息学生的智慧,只有“闻一以知十”题解,才能激发学生浓厚的学习兴趣,促进他们思维品质的发展,而一题多解无疑是激发学生兴趣,开拓思路,培养思维品质和应变能力的一种十分有效的方法。
一、下面就本人在教学中的体会谈谈“一题多解”在数学教学中的作用
(1)一题多解有利于培养学生思维的广阔性。对于同一道题,从不同的角度去分析研究,可能会得到不同的启示,从而引出多种不同的解法。在教学中,不失时机地通过引导学生进行“一题多解”的训练,通过广泛的联想,使我们的思维触角伸向不同的方向,不同的层次,这样不仅能巩固所学知识,而且能较好地培养学生思维的广阔性.
2.一题多解有利于培养学生思维的深刻性。不仅表现在审题时能很快发现和抓住问题的基本特征,挖掘出隐含条件, 从而迅速确立解题的策略,而且还表现在解题后不满足于“一题一法”而是深刻领会解题的实质,掌握其一般规律。
3.一题多解有利于培养学生思维的灵活性。数学问题形式多样,千姿百态,由于思维定势产生的负效应,学生解题时往往墨守成规,故思维灵活性的培养在解题教学中,主要表现为一题多解。即善于根据题设中的具体情况,及时地提出新的设想和解题方案,不固执己见,不拘泥于陈旧的方案。
4.一题多解有利于培养学生的创新思维。江泽民指出:“创新是一个民族进步的灵魂,是一个国家兴旺发达不竭的动力。”人类文明史,就是一部创新史。创新思维是人类大脑的机能,任何具备正常大脑机能的人都具有进行创新思维的禀赋,经过一定的培养与训练,都会具有创造的才能。创新思维人人具备,创造力人人皆有,且可以后天培养。
一题多解对学生创新思维能力培养起着重要的作用。一题多解的训练,可开拓学生思路,提高学生思维的灵活性和敏捷性;在培养学生创造思维能力方面有特殊的功能;也是发展学生创造力的主要途径之一。
(5)“一题多解”有利于调动学生的学习积极性,在教师的启发、引导下,对一道題学生可能提出两种、三种甚至更多种解法,课堂成为同学们合作、争辩、探究、交流的场所,它能极大提高学生的学习兴趣。
(6)“一题多解”有利于学生积累解题经验,丰富解题方法,学会如何综合运用已有的知识不断提高解题能力。
二、案例分析——平行四边形一题多解
如图1,平行四边形 ABCD中AD=2AB,E、F在直线AB上,且AE=BF=AB,求证:DF⊥CE.
证法一、易知ΔADF、ΔBCE为等腰三角形,
故∠1=∠F, ∠2=∠E,又CD∥AB,
故∠3=∠F, ∠4=∠E,从而∠1=∠3,∠2=∠4,而∠1+∠2+∠3+∠4=1800,故∠3+∠4=900,表明∠COD=900,所以DF⊥CE。
证法二、如图2,连接MN,则CD=BF,且CD∥BF,故BFCD为平行四边形,则CN=BN=AB,同理,DM=MA=AB,故CN=DM且CN∥DM,得平行四边形CDMN,易见CD=DM,故CDMN也是菱形,根据菱形的对角线互相垂直,结论成立。
证法三、如图3,连接BM、AN, 可证ΔAFN中,BN=BF=BA,则ΔAFN为直角三角形,即DF⊥AN,利用中位线定理可知AN∥CE,故DF⊥CE。
证法四、如图4,作DG∥CE交AE延长线于G,则EG=CD=AB=AE,故AD=AG=AF,从而DF⊥DG,而DGCE,故DF⊥CE。
从上面的多种解法我们注意到数学问题形式多样,由于思维定势产生的负效应,学生解题时往往墨守成规,而思维灵活性的培养在解题教学中主要表现为一题多解.因此,在教学及学习过程中应注重一题多解.一题多解以其思维的发散性,探求问题的多方向性、多层次性、多侧面性,解法转化的灵活性,使数学解题的方法五彩缤纷,各具特色.在教学及学习中运用一题多解,是学好数学的一种良好方法.运用一题多解,总结各种解法,有利于学生的知识系统化、深刻化;运用一题多解,有利于培养良好的数学思维品质;运用一题多解,有利于学生寻求规律,更好地学会求解数学问题;运用一题多解,有利于开发学生的智力及培养思考问题的能力。
数学是思维的体现,解决问题是学生学习数学的目的,因而如何通过解题活动来培养学生良好的思维能力,应是数学教学的中心问题。但过多过密盲目的解题,不仅不会促进思维能力的发展、技能的形成,反而易使学生疲劳,兴趣降低,窒息学生的智慧,只有“闻一以知十”题解,才能激发学生浓厚的学习兴趣,促进他们思维品质的发展,而一题多解无疑是激发学生兴趣,开拓思路,培养思维品质和应变能力的一种十分有效的方法。
一、下面就本人在教学中的体会谈谈“一题多解”在数学教学中的作用
(1)一题多解有利于培养学生思维的广阔性。对于同一道题,从不同的角度去分析研究,可能会得到不同的启示,从而引出多种不同的解法。在教学中,不失时机地通过引导学生进行“一题多解”的训练,通过广泛的联想,使我们的思维触角伸向不同的方向,不同的层次,这样不仅能巩固所学知识,而且能较好地培养学生思维的广阔性.
2.一题多解有利于培养学生思维的深刻性。不仅表现在审题时能很快发现和抓住问题的基本特征,挖掘出隐含条件, 从而迅速确立解题的策略,而且还表现在解题后不满足于“一题一法”而是深刻领会解题的实质,掌握其一般规律。
3.一题多解有利于培养学生思维的灵活性。数学问题形式多样,千姿百态,由于思维定势产生的负效应,学生解题时往往墨守成规,故思维灵活性的培养在解题教学中,主要表现为一题多解。即善于根据题设中的具体情况,及时地提出新的设想和解题方案,不固执己见,不拘泥于陈旧的方案。
4.一题多解有利于培养学生的创新思维。江泽民指出:“创新是一个民族进步的灵魂,是一个国家兴旺发达不竭的动力。”人类文明史,就是一部创新史。创新思维是人类大脑的机能,任何具备正常大脑机能的人都具有进行创新思维的禀赋,经过一定的培养与训练,都会具有创造的才能。创新思维人人具备,创造力人人皆有,且可以后天培养。
一题多解对学生创新思维能力培养起着重要的作用。一题多解的训练,可开拓学生思路,提高学生思维的灵活性和敏捷性;在培养学生创造思维能力方面有特殊的功能;也是发展学生创造力的主要途径之一。
(5)“一题多解”有利于调动学生的学习积极性,在教师的启发、引导下,对一道題学生可能提出两种、三种甚至更多种解法,课堂成为同学们合作、争辩、探究、交流的场所,它能极大提高学生的学习兴趣。
(6)“一题多解”有利于学生积累解题经验,丰富解题方法,学会如何综合运用已有的知识不断提高解题能力。
二、案例分析——平行四边形一题多解
如图1,平行四边形 ABCD中AD=2AB,E、F在直线AB上,且AE=BF=AB,求证:DF⊥CE.
证法一、易知ΔADF、ΔBCE为等腰三角形,
故∠1=∠F, ∠2=∠E,又CD∥AB,
故∠3=∠F, ∠4=∠E,从而∠1=∠3,∠2=∠4,而∠1+∠2+∠3+∠4=1800,故∠3+∠4=900,表明∠COD=900,所以DF⊥CE。
证法二、如图2,连接MN,则CD=BF,且CD∥BF,故BFCD为平行四边形,则CN=BN=AB,同理,DM=MA=AB,故CN=DM且CN∥DM,得平行四边形CDMN,易见CD=DM,故CDMN也是菱形,根据菱形的对角线互相垂直,结论成立。
证法三、如图3,连接BM、AN, 可证ΔAFN中,BN=BF=BA,则ΔAFN为直角三角形,即DF⊥AN,利用中位线定理可知AN∥CE,故DF⊥CE。
证法四、如图4,作DG∥CE交AE延长线于G,则EG=CD=AB=AE,故AD=AG=AF,从而DF⊥DG,而DGCE,故DF⊥CE。
从上面的多种解法我们注意到数学问题形式多样,由于思维定势产生的负效应,学生解题时往往墨守成规,而思维灵活性的培养在解题教学中主要表现为一题多解.因此,在教学及学习过程中应注重一题多解.一题多解以其思维的发散性,探求问题的多方向性、多层次性、多侧面性,解法转化的灵活性,使数学解题的方法五彩缤纷,各具特色.在教学及学习中运用一题多解,是学好数学的一种良好方法.运用一题多解,总结各种解法,有利于学生的知识系统化、深刻化;运用一题多解,有利于培养良好的数学思维品质;运用一题多解,有利于学生寻求规律,更好地学会求解数学问题;运用一题多解,有利于开发学生的智力及培养思考问题的能力。