Microstructure evolution and mechanical property of Cu-15Ni-8Sn-0.2Nb alloy during aging treatment

来源 :材料科学技术(英文版) | 被引量 : 0次 | 上传用户:xiao203
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Aging treatment of Cu-based alloys is essential to enhance their strength that is desirable for their exten-sive engineering applications in electrical industry,whereas the underlying mechanism of strengthening is essential for massive manufacturing of these alloys.Here,the microstructure evolution of a supersatu-rated solid solution Cu-15Ni-8Sn-0.2Nb alloy aged at 400℃for different time was characterized at atomic scale using state-of-the-art transmission electron microscopy(TEM)and the corresponding mechanical property was also measured.The results reveal that the modulated structure,DO22/L12 ordering,and discontinuous precipitation(DP)appeared in the advances of aging time.At the early stage of aging treatment,component modulation waves and satellite spots appeared from spinodal decomposition and the modulation wavelength was identified in the range of 1-7 nm.Subsequently the modulated struc-tures formed-poor-rich solute regions,of which DO22 ordering was present in the Ni-poor region while L1 2 ordering appeared in the Ni-rich region.The sequence of ordering precipitates was further verified by density functional theory(DFT)simulations.Furthermore,orientation relationships and interfacial structures between DO22,L12 phases and the parent matrix were determined.The measured hardness of alloy reached a maximum value of 335 HV after aging for 120 min due to the coherence between the two ordering phases and matrix.These results illustrated the importance of aging on structural evolution and mechanical property of Cu-15Ni-8Sn alloy at various heat treatment stages,which could potentially help in manufacturing promising alloys for their extensive engineering applications.
其他文献
Thermal stability and high-temperature mechanical properties of a 304L austenitic oxide dispersion strengthened(ODS)alloy manufactured via laser powder bed fusion(LPBF)are examined in this work.Additively manufactured 304LODS alloy samples were aged at te
Topological morphology that dominates the surface electronic properties of nanostructures plays a key role in producing desired materials for versatile functions and applications in many fields,but its modula-tion for specific functions remains a big chal
Incorporating antibacterial agent into biomimetic coating inspired by natural organisms with micro-nano structure surface has generated more interest for antifouling applications.In this work,poly(dimethylsiloxane)(PDMS)-based triblock copolymers and sub-
Ca3-x(PO4)2 ∶xTb3+(0.2≤x≤0.4),Ca2.3(PO4)2∶0.35Tb3+,0.35A+(A=Li,Na,K),and Ca2.3(PO4)2∶0.35Tb3+,yLi+(0.35≤y≤0.455)phosphors were prepared by solid-state reaction.All the prepared phosphors formed a rhombohedral unit cell with the R3c space group.To improve
The irreversible motion of magnetic domain walls in ferromagnets can dissipate a large portion of the elastic energy,and the associated damping capacity is proportional to the magnetostriction constant.In contrast,here we found that the damping capacity o
Three-dimensional(3D)graphene-based aerogels have significant potential for adsorption,sensors,and thermal management applications.However,their practical applications are limited by their disorganized structure and ultra-low resilience after compression.
Temperature-responsive resistance transition behaviors of the melamine sponges wrapped with different graphene oxide derivatives(i.e.nanoribbon,wide-ribbon and sheet)were investigated.Melamine sponge composites coated by three types of GO derivatives were
Heterogeneous Pd nanocatalysts are efficient catalysts for the Heck reaction but require multi-step,sophisticated procedures and harsh reaction conditions.In this work,a green and facile strategy has been developed to decorate Pd nanoparticles on polydopa
Tilt probe penetrating friction stir welding(PFSW)was an innovative technology proposed in recent years to avoid the formation of kissing bond in the root of joint.However,with the heat input decreasing,“S”line or zigzag line was easily introduced in the
This work investigates the strain rate dependence of dynamic recrystallization behaviour of high-purity zinc in room temperature compression under strain rates of 10-4 s-1,10-2 s-1 and 0.5 s-1.Results from electron backscatter diffraction provide insight