浅谈高等数学之美

来源 :课程教育研究·上 | 被引量 : 0次 | 上传用户:pz199
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  【摘要】当前,很多学生对数学有一些误解,他们认为数学是一门令人乏味的学科,其主要原因是他们还没有领会到数学中的美。数学是一门美的学科,更是一门艺术,数学概念的简单化、统一性,结构系统的层次性、协调性、对称性,数学练习、数学命题的结合性、概括性都渗透着美,本文就此说说高等数学中渗透的一些美。
  【关键词】高等数学 简单美 统一 体现
  【基金项目】本文系2013年校级科研课题“临沧师专高等数学教学改革与实践探讨”的阶段性成果。
  【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2013)12-0139-02
  数学理论的过人之处,就在于能用最简单的方式揭示现实世界中的量及其关系的规律性。数学教学必须根据学生的心理特点,遵循教学规律,运用美育原则,通过教师的精心设计,把数学材料的静态集合转化成切合学生心理水平的教学的动态过程,造成一种知识与能力的结合,数学与艺术交融,教师与学生共鸣的优美环境。高等数学中,处处都存在数学的美,教师要让学生将数学思想方法作为鉴赏数学美的重要途径,运用类比方法时鉴赏相似美, 运用构造法时鉴赏结构美与奇异美, 运用解析法时鉴赏和谐美, 运用对偶法时鉴赏对称美。
  1.简洁美
  简洁美是数学美的重要标志,数学的简洁美并不是指数学内容本身简单,而是指数学的表达形式、数学的几何语言、数学的证明方法和数学的理论体系结构简洁,数学的简洁美主要表现在数学的逻辑结构、数学的方法和表达形式的简单性。
  1.1数学逻辑结构的简洁美
  简洁性是数学结构美的基本内容,就数学理论的逻辑结构而论,它的简单性一般包括两个方面的内容:一是理论前提的简单性;二是理论表述的简单性,以最简单的方式抓住现象的本质,定理和公式简洁明了。数学家们通过实践也证明了数学的简洁性与严格性不可能产生矛盾。正如爱因斯坦所说的“我们面对的这个世界,可以由音乐的符号组成,也可以由数学公式组成。” 比如数列极限的ε-N 定义:
  xn=A?圳?坌ε>0,?埚N,当n>N时,有|xn-A|<ε,
  函数极限的ε-N 定义:
  f(x)=A?圳?坌ε>0,?埚δ>0,当0≤|x-x0|<ε时,有|f(x)-A|<ε
  简练严谨,内涵丰富,充分体现了数学逻辑结构的简洁美。
  1.2数学表现形式的简洁美
  数学的简洁美还体现在数学表现形式上,数学符号充满了整个数学教学,数学离不开数学符号,数学符号的根本作用是使得数学语言成为全世界通用的最简洁的语言。在数学中,符号语言要求合理、简洁明了、易用、规范。比如没有人愿把一亿写成l00000000,而要写成l07,用字母表示数字元,将文字语言转化成为符号语言就体现了数学表现形式的简洁美。
  2.对称美
  对称性是最能给人美感的一种形式。德国数学家魏尔说“美和对称性紧密相关”,在现实世界中,对称的现象很多,人体的外形显示出左右对称,建筑、工具等也常呈现对称性。例如:几何中的中心对称、轴对称、镜像对称等都体现了对称美;逆运算中,映射、逆映射,微分、积分,正数、负数,分数、整数,实数、虚数等数域的扩张,都是追求对称美的产物。
  2.1几何图形的对称美
  几何图形的中心对称、轴对称、点对称、面对称、球对称,都给人以舒适、美观之感,而球对称被认为是最美的对称。再如高等数学中伯努利双纽线r2=a2cos2α、四叶玫瑰线r=acos2α曲线的图形等无不体现对称美。
  2.2数学知识和思想方法的对称美
  数学将数域一次次的扩充,从正数到负数,有理数到无理数,都是追求形式对称美的结果。再如加法的逆运算是减法,乘法的逆运算是除法,乘方的逆运算是开方,正弦函数与余弦函数,指数函数与对数函数,这种逆运算的建立也都与对称美有关。还有导数的运算法则,微积分中的二项式定理,空间曲面的法线方程,连续与间断等等。
  3.和谐统一美
  和谐性是数学美的最基本、最普遍的特征之一,任何美的东西无不给人以和谐之感。就数学而言,数学中的和谐统一美是指部分与部分,部分与整体之间的内在联系或共同规律所呈现出来的和谐、一致。数学推理的严谨性和矛盾性体现了和谐,表现在一定意义上的不变性,反映了不同对象的协调一致。
  3.1数学概念、规律、方法的统一
  一切客观事物都是相互联系的,因而作为反映客观事物的数学概念、数学定理、数学公式、数学法则也是相互联系的,在一定条件下可处于一个统一体之中,如定积分、重积分、曲线积分和曲面积分,它们表述的实际意义各不同,但都统一于黎曼积分之中。各积分之间的联系可表示为图1。
  在数学方法上,同样渗透着统一性的美,例如:从结构上分析,解析法、三角法、复数法、向量法和图解等具体方法,都可以统一与数形结合法。数学中的公理化方法,使零散的数学知识用逻辑的链条串联起来,形成完整的知识体系,在本质上体现了部分和整体之间的和谐统一。
  3.2数学理论的统一
  高等数学中定义和定理以及数、式、形之间,各个知识块既相互独立、自成体系,又依一定的逻辑关系相互贯通、相互派生,表现为高度的和谐统一。和谐美贯穿于高等数学这个庞大的知识网络内。例如,函数与极限是贯穿高等数学的两个最基本的概念,函数是微分学研究的对象,而微积分的定义就是极限概念及其推论,它们之间体现了知识的联结美。又例如微分中值定理,其本质是闭区间上函数的增量与这区间上某点的导数之间的关系,它是微分理论中的重要组成部分,也是导数应用的桥梁。其中罗尔定理是拉格朗日中值定理的特殊情况,柯西中值定理又是拉格朗日中值定理的推广,并且泰勒定理是拉格朗日中值定理向高阶导数情况下的推广和应用,它是更一般的微分中值定理形式。它们充分表达了定理之间的和谐与统一。
  3.3数学和其他科学的统一
  数学和其它科学的相互渗透,导致了科学数学化。正如马克思所说的,一门科学只有当它成功的运用数学时,才算达到了真正完善的地步。力学的数学化使牛顿建立了经典力学体系,科学的数学化使物理学与数学趋于统一。建立在相对论和量子论两大基础上的物理学,其各个分支都离不开数学方法的应用,它们的理论表述也采用了数学的形式。化学的数学化加速了化学这门实验性很强的学科向理论科学和精确科学的过渡。
  4.奇异美
  数学的奇异是指数学结论或解决问题方法的新颖、奇巧、出乎意料,往往勾起思想上的震动,引起人们的赞赏与叹服。在这种意义上奇异也是一种美,奇异到极点更是一种美。例如:人们把可微与连续看作一回事的时候,绝不会感到可微有什么新的特色可供欣赏,当处处不可微的函数呈现在我们面前时是多么令人激动不已。牛顿莱布尼茨公式从一开始直到很长时间内是畅通无阻的,当狄里克莱作出函数,原有积分失灵了,这种奇异现象给积分带来新的生机,人们开始创立新的积分——勒贝格积分。可以说,不获得奇异性结果,旧的错误观念就不会崩溃,就不会产生认识的飞跃,因此也就不难理解数学上的奇异美,如果没有奇异性,数学也就黯然失色了。此外,数学中有很多平滑曲线,如概率曲线、笛卡尔叶形线、心形线、伯努里双纽线、三叶玫瑰线等,这些曲线画起来流畅自然,无一不给人以美感的享受;圆柱螺旋线、圆锥螺旋线在旋转中不断上升,给我们运动的感觉,体验到动感的美。
  参考文献:
  [1]张顺燕. 数学的美与理[M].北京: 北京大学出版社, 2004: 2.
  [2]易南轩.数学美拾趣[M].北京: 科学出版社, 2004:2, 232.
  [3]侯风波.高等数学(第二版)[M].北京:高等教育出版社, 2002: 262
  作者简介:
  鲁翠仙(1980-),女,云南临沧人,临沧师范高等专科学校数理系讲师,硕士研究生,研究方向:代数、计算方法。
其他文献
【摘要】高职院校的发展需要“大爱”精神培植文化内涵,通过在高等数学教学过程中践行“大爱育人”的教育理念,培养合格人才。  【关键词】大爱育人 高职 高等数学 实践  【中图分类号】G71 【文献标识码】A 【文章编号】2095-3089(2013)12-0128-02  在我国高等教育界,杨福家院士率先提出“大爱”的概念并作出解释,他以“一流大学需要大楼、大师与大爱”为题, 阐述了他对世界一流大学
实验器材:胶布、乒乓球、绳子(30厘米长)。   实验步骤:   1.用胶布把乒乓球粘在绳子的一端。   2.拎着绳子的另一端,将乒乓球拿到自来水龙头下。   3.拧开水龙头,让自来水冲在乒乓球上。   4.然后慢慢地把绳子引向一侧,离开自来水。这时,乒乓球好像克服了重力的作用,不仅不离开水,反而被水“吸引”住了。很快,绳子就与自来水的水柱形成角度了。   解释现象:   当把绳子引向一侧,离开自
【摘要】工科院校培养的目标是应用型人才,具有鲜明的工科特色。本文针对工科院校高等数学教育现状,提出了与应用型人才培养相适应,具有工科特色的高等数学教学改革措施。  【关键词】工科特色 高等数学 教学改革  【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2013)12-0129-01  一、高等数学教育现状及教学改革的必要性  高等数学教育的任务就是要通过教学活动让学生掌握
【摘要】本文对小学生缺乏形象思维能力的原因作了分析;阐述了形象思维的重要性;以及教学中教师应注意的问题;同时提出了若干培养学生立体几何形象思维能力的方法:重视直观教学;培养空间观念;对比对照的方法。  【关键词】立体几何 形象思维 直观教学 培养  【中图分类号】G623.5 【文献标识码】A 【文章编号】2095-3089(2013)12-0138-01  我国科学思维的开创者钱学森先生将思维分