Cu3N保护壳层稳定CuO光阴极

来源 :催化学报 | 被引量 : 0次 | 上传用户:luojuncad
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
氧化铜是一种有潜力的光电催化分解水用光阴极材料,但由于其在光电催化分解水过程中会发生严重的光腐蚀,限制了其实际应用.因此,构建有效的保护壳层抑制氧化铜光腐蚀,具有重要意义.虽然原子层沉积技术已成为构建光阴极保护层的主流手段,但由于制造成本高昂,难以满足未来实际应用对低成本和规模化的要求,因此,亟需发展简易、低廉的保护壳层制备手段.从电化学稳定性的角度出发,发现氮化铜(Cu3N)是一种电化学稳定的铜基氮化物,已被广泛应用于电催化还原CO2、N2和O2等领域,具有强的抗电化学还原能力(J.Am.Chem.Soc.,2011,133,15236-15239;Nano Lett.,2019,19,8658-8663).因此,氮化铜具有作为氧化铜光阴极保护壳层的潜质.目前,氮化铜薄膜主要通过高真空的手段制备,如射频磁控溅射以及等离子体辅助分子束外延等方式.为了实现低成本、易制备的目标,本文发展了一种低温(185°c)氮化的方法,在氧化铜光阴极表面原位制备出氮化铜保护壳层,使氧化铜光阴极获得了稳定的光电催化分解水性能.在20 min的光电催化分解水的稳定性测试中,未保护的氧化铜光阴极的光电流密度衰减至初始光电流密度的10%,而氮化铜壳层保护的氧化铜光阴极的光电流密度则仍可保持其初始光电流密度的80%.通过扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)等表征方法,研究了氮化铜保护壳层对氧化铜光阴极的保护机理,即致密的抗还原物质氮化铜作为保护层,有效隔绝了电解质溶液与氧化铜的直接接触,从而抑制了氧化铜的光腐蚀.XRD和XPS结果证实表面氮化铜壳层的生成;SEM结果表明,存在致密的氮化铜薄膜壳层.光电化学稳定性测试后,样品的XRD结果表明,无氮化铜保护的氧化铜光阴极已经完全被还原为氧化亚铜,而氮化铜保护的氧化铜光阴极只有少部分被还原为氧化亚铜,证明氧化铜的光腐蚀得到了有效的抑制.稳定性测试结果表明,氮化铜保护的氧化铜光阴极表面的N 1s信号基本保持不变,证实了氮化铜保护壳层具有高电化学稳定性和抗电化学还原能力.虽然,氮化铜保护壳层在一定程度上限制了氧化铜光阴极的光电催化分解水活性,但后续可尝试在氮化铜表面负载产氢助催化剂,以实现光电流密度和稳定性的同步提升.本工作展示了氮化铜用作不稳定光阴极表面(尤其是铜基光阴极)保护壳层的潜力.“,”CuO,as a promising photocathode material,suffers from severe photocorrosion in photoelectro-chemical water splitting applications.Herein,a Cu3N protection shell was used to protect the CuO photocathode for the first time to effectively suppress the photocorrosion of CuO.Consequently,the Cu3N-protected CuO photocathode shows improved stability,retaining 80% of its initial current density in a 20-min test,while only 10% of the initial current density can be retained for the bare photocathode.This work may provide an important strategy for using Cu3N shells to stabilize un-stable photocathodes.
其他文献
催化裂化是石油化工的核心单元之一.从催化裂化尾气中分离出来的碳四馏分富含许多的不饱和烯烃,如1-丁烯、顺、反式-2-丁烯以及少量的1,3-丁二烯,这些不饱和烯烃可以通过后续聚合反应,生成合成橡胶和工程塑料的重要原料,具有重要的应用价值.上述工艺过程对原料中1,3-丁二烯的含量(<100~200 ppm)有严苛的要求.采用选择性加氢技术对碳四馏分中的1,3-丁二烯进行选择性加氢,将其转化为更高附加值的单烯烃是一个理想的解决方案.然而,1,3-丁二烯加氢反应得到的单烯烃可能发生深度加氢得到副产物丁烷.因此,开
由于具有较好的催化性能,含过渡金属的酶一直备受研究者的关注.其中,铜作为生物体中含量仅次于铁和锌的过渡金属,在新陈代谢过程中发挥着重要作用.铜酶广泛存在于自然界中,该类生物大分子涉及电子转移、氧化还原、氧气的运输与活化等生物化学过程.多种铜酶在氧气活化方面表现出引人注目的 性质,例如:颗粒状甲烷单加氧酶(pMMO)、多糖单加氧酶(LPMO)、双铜单加氧酶肽基甘氨酸α-羟基化酶(PHM)和多巴胺β-单加氧酶(DβM),它们均可活化氧气,并生成相应的铜-氧活性物种.铜酶或铜配合物活化氧气可生成多种铜-氧活性物
探索高效、经济的非金属氧还原(ORR)电催化剂已成为电化学能源体系的关键.科学界最具挑战性的目标之一是通过合理地验证和精确地调节活性位点来设计结构明确、性能优异的催化剂材料.本文提出一种精确和可控的串联协同作用的活性位点策略,以提高MFCOFs的ORR催化活性.以亚胺-N、噻吩-S和三嗪-N等作为结构单元,通过精确的串联策略合成了三种MFCOFs,分别为亚胺-N构建的TFPB-TAPB-COF、亚胺-N和噻吩-S构建的BTT-TAPB-COF以及亚胺-N、噻吩-S和三嗪-N三种活性中心构建的BTT-TAT
在光催化过程中,光催化剂被太阳能激发产生光生电子和空穴,来实现环境净化或能量转换,是应对全球变暖和能源短缺的有效途径之一.然而,光催化技术面临的主要瓶颈问题是光生载流子的低分离效率和高反应能垒.而催化剂本身的特性对这一点起到了决定性的作用.因此,催化剂的合理设计和改性是提高光催化效率的关键.金属有机框架(MOFs)是一类由金属节点和有机配体组成的新型结晶多孔材料.基于结构多样性、超高比表面积、形状和尺寸可调的纳米孔或纳米通道等优异的特性,MOFs基材料在光催化领域引起了广泛关注.然而,MOFs的主要问题之
有机自由基化学的发展可追溯到110多年前.起初,高活性的自由基中间体被认为是难以控制且不可预测的物种,往往导致反应变得杂乱无章,这种误解导致该领域的研究没有得到足够的重视.为了发展高效、高选择性且符合绿色化学要求的化学转化,合成化学家们一直致力于开发新颖的催化体系和反应试剂,而自由基化学因其独特的反应性质和巨大的发展潜力也逐渐引起人们的广泛关注.与离子型物种相比,自由基物种在拓展反应类型、提升反应兼容性以及快速构筑分子复杂性方面具有显著优势.伴随着这一领域的快速发展,自由基化学已逐渐取得了许多不错的突破和
贵金属广泛用于多相催化研究,对于诸多具有重要科学意义和工业应用价值的化学反应展现出优异的催化活性和选择性.引入轻合金元素(如C,H,B和N),可以调控贵金属的晶体结构和电子性质,是进一步提高贵金属催化性能的重要策略.与传统的金属合金催化剂相比,这种轻元素合金化的催化剂具有一些独特性:(1)轻元素由于原子尺寸很小,容易溶于金属晶格的间隙位点;(2)一些轻元素(如C,N和S)的电负性与金属的差别很大,能够在相邻原子间引起较大的电荷转移;(3)轻元素-金属合金中的电子相互作用主要由金属的d轨道和轻元素的s轨道杂
为了促进CO2电化学还原(ECR)制备燃料和高值化学品,开发高活性、低成本和高选择性催化剂至关重要.本文通过简单的溶剂热法一步合成超细氧化铜(CuO)纳米颗粒修饰的二维Cu基金属有机框架(CuO/Cu-MOF)复合催化剂.并采用X射线衍射、X射线光电子能谱、傅里叶变换红外光谱、高角环形暗场像-扫描透射电镜、N2吸附/脱附、元素分析谱、CO2吸附等方法进行表征,对CuO/Cu-MOF复合材料的组成、形貌和孔结构等进行了系统研究.结果 表明,超细CuO纳米粒子的尺寸为1.4到3.3 nm,均匀修饰在二维Cu-
电催化是发展可持续洁净能源技术的基础科学,是电化学能源转换和物质转化的关键环节.精准合成催化活性纳米结构是制约很多电催化反应走向实际应用的重要挑战.与湿化学合成、固相合成和气相沉积等传统方法相比,电化学合成是一种简单、快速、廉价及可控的高效催化材料制备方法,也是一种最为直接的一体化电极制备方法.本文综述了近年来利用电化学合成方法制备高效能源催化材料的研究进展.首先,简要介绍了电沉积、阴极腐蚀、电化学去合金化、电化学置换、电化学剥离和电化学修饰等几种主要电化学合成方法的基本原理,并讨论了电化学合成中电势、电
近年来,由于化石燃料不断消耗造成的二氧化碳气体过量排放,对人类生活环境造成越来越大的威胁.电催化二氧化碳还原反应是一种很有前景的解决方法,可回收废弃的二氧化碳并通过将其转化为可再生的燃料和化学品来最终实现碳循环.在各种还原产物中,多碳化学产物因其具有高能量密度和高商业价值而备受青睐.然而,由于涉及多个复杂的反应途径,设计对多碳产物高活性的催化剂仍然是一个关键挑战.铜是目前最有前途的催化剂之一,它具有独特的电子结构来吸附CO中间体,从而促进后续C-C偶联成多碳产物.虽然Cu基催化剂在电催化二氧化碳还原过程中
面对不可再生资源的快速消耗和环境污染的日益加重,寻找清洁可再生能源势在必行.氢能是一种清洁可再生的能源,是目前最有希望替代化石燃料的一种能源.电化学水分解可用来产生高纯氢气,其中析氢催化剂起着至关重要的作用.尽管贵金属铂基催化剂表现出优异的析氢性能,然而稀缺性和高成本限制了其大规模应用.因此,开发高效和地球存量丰富的电催化剂是实现大规模绿色能源转换和存储技术的关键.二维材料可分为非金属材料(如石墨烯、碳化氮和黑磷)和过渡金属基材料(如卤化物、磷酸盐、氧化物、氢氧化物和碳氮金属化合物),具有独特的结构和电化