论文部分内容阅读
针对基于全局匹配的视觉目标跟踪算法的不足,文章采用一种局部匹配的思路,利用Gabor特征的抗噪性和边缘极大值点的不易丢失性,实现了一种鲁棒的Kalman车辆跟踪算法。首先以抗噪性强的Gabor特征构建匹配特征向量;然后采用边缘极大值点作为待匹配特征候选点;最后将以上特征输入至Kalman跟踪器,实现前方车辆跟踪。试验表明该方法在车辆姿态大幅度变化及遮挡时仍具有较强的鲁棒性。