论文部分内容阅读
利用粗糙集(RS)对不精确数据的处理能力,生成分类数据的边界集,替代原始样本作为训练集,减少训练集与获取的支持向量的数量,然后使用支持向量机的最小序列优化(SMO)算法改进回归学习机的性能。将粗糙集与SMO回归算法结合提出一种混合函数回归算法RS-SMO-RA。在常用SMO回归算法SMO-RA基础上,扩增一段简短的生成边界样本的算法程序。仿真结果表明,算法RS-SMO-RA的效率更高,且能够改进学习结果的性能。