一题多解和一题多变在高中数学教学中的应用

来源 :数学学习与研究 | 被引量 : 0次 | 上传用户:sinoerli
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  【摘要】 数学作为一门工具学科,广泛地应用于我们的生活中.高中数学更是数学教学阶段的重点和难点.在实际教学中,尤其注重学生逻辑思维灵活性、发散性的培养.因此,教师通过什么样的教学方法才能使学生更好地学习数学,这是一个值得深思的问题.在实际教学中发现,通过对学生进行长期的一题多解与一题多变训练会有效地培养学生思维的灵活性与多向性,所以,教师应把一题多解和一题多变的教学方法应用到课堂中.
  【关键词】 高中数学;一题多解;一题多变
  一题多解就是学生寻找多种方法做单个的数学题,不但使学生的思维得到了拓展,而且提高了学生对数学公式、定义、定理应用的灵活性.一题多变就是通过改变题干中的已知条件,让学生从多角度认识问题,通过对比、类比、联想来解决问题,促进学生学习数学知识的连贯性.而对于一题多变,学生内心都比较恐惧,容易被题目表面所迷惑,找不到正确的做题方法.其实无论哪种方法,学习数学的关键都是把数学题目变成自己所能看得明白的语言,从而找到做题的切入点,最终你会发现所用到的知识点与公式都是一样的.下面,笔者就根据自己在课堂上的实际教学经验来谈谈在高中数学教学中应用一题多解和一题多变的教学方法的重要性.
  一、在教学中应用一题多解和一题多变
  1.推导数学公式
  无论是在初中还是在高中,数学学习的基础与关键都是熟记公式.就像建筑工人需要用工具建一栋大楼一样,学习数学就像建楼,数学公式就是工具,没有了工具是无法完成這项工作的.当然,熟记公式也是有方法的,不能死记硬背公式,因为高中数学公式非常的复杂且多,如果不能理解与认识数学公式,很容易把大量的公式背混或者考试时突然忘记.而不会应用数学公式去做题是高中数学学习中出现最大的问题,这个时候推导公式就起到了作用,掌握了数学公式的推导,进而知道了公式的由来,所以加深了对公式的理解.而在推导数学公式的过程中用到一题多解,学生既能从中掌握做题的技巧,也能加深对公式的记忆.
  2.例题讲解
  在课堂教学中,教材上的例题和课后的习题讲解是重中之重.我们都知道,例题和习题的选取都具有典型的代表性,在做题中会发现许多题都和例题有一定的联系,并且解题方法的核心是不变的.所以,在例题和习题的讲解演练过程中,教师应让学生掌握一题多解和一题多变的方法,使学生从几个典型的例题中找到做一类题的解题技巧与规律,避免题海战术,使学生产生厌烦的心理.
  二、应用一题多解与一题多变的实际例子
  1.一题多解推导公式
  数列是高中数学学习的重点也是难点之一,在高考中占有很大的比重,这一块知识的公式也非常多.比如,等差数列、等比数列的通项公式,前n项和公式以及有关性质的公式.其实,有很多的公式都可以用多种方法推导出来,这里我仅以等差数列的通项公式an=a1 (n-1)d为例,用两种不同的方法推导一下.
  例2这道题考查同角三角函数的基本关系与商数关系,对于学生而言,根据三者之间的关系会很容易做出这道题.与例2相比,变式1中角α的范围没有明确,会有很多的同学容易忽视这个问题,这类同学一方面是读题不认真粗心大意;另一方面也反映了他们对这块知识点掌握得不是很好.因此,教师可以提问学生看出来这两道题有什么不同,这样就提示了学生,给学生一个正确的思路.在变式2中,cos α的值不再是具体的数值,而是变成了一个有范围的参数,难度稍微增大,可以让同学们讨论研究一下解法,并找两名同学到黑板上作答.最后引导学生发散思维,对例2进行其他的变形,对于想出其他变形的同学要进行表扬,让同学们在数学学习中体验到成就感,也加深学生对知识的深层次理解.当然不只变式3一种,这里就不再具体说明了.
  三、结束语
  高中数学有两个显著的特点,一个是灵活,一个是多变.教师往往为了学生能够熟练地掌握数学知识都会采用题海战术,给学生布置大量重复题型的课后作业,但学生既要完成数学作业,又要完成其他科目的作业,大量的作业就会让学生感到枯燥和无力,进而产生厌恶的心理,久而久之,对数学就失去了兴趣.所以,教师要解决这个问题,一题多变和一题多解就起到了很重要的作用.因为我们都知道高中数学的学习最重要的是有一个好的学习方法,关键是把学过的知识点贯串起来,通过类比,更好地掌握知识.而教师通过一题多解和一题多变的教学,会使数学知识点增多,学生在做题的过程就学会了更多的知识.在复习旧知识点的同时还能知道自己哪些知识点掌握得不好,对新知识的学习起到了承前启后的作用,成为一个过渡的桥梁.我们从以上的两道例题中就可以看出一题多变和一题多解的重要性,它们既巩固了数学知识,又培养了学生多动脑思考的好习惯,让学生在课堂上发挥自己的主导地位,不再一味地听老师讲,让学生对数学产生兴趣,进而爱上数学.
  总而言之,教师应该在数学教学中多使用一题多解与一题多变的教学方法,但要注意的是,并不是所有的数学题都适合这种教学方法,教师应该在当前国家教育提出的核心素养目标的前提下对学生进行合理的训练.教师可以挑选一些有针对性的题,通过精心的研究,创新的拓展,引导学生用多种方法来解答,让学生尝试自己去改变题中已知条件或者结论,自己作答.但要注意的是,一题多变要遵循由浅到深,由易到难的原则,循序渐进地引导学生,不要跳跃性太大,打击学生学习的积极性.这就需要教师多研究学生的心理与目前这个阶段的认知水平.一题多解和一题多变的教学方法一定会使学生的学习成绩有所提高.
  【参考文献】
  [1]郭兴甫.重视课本例题习题教学[J].课程教材教学研究:中教研究,2017(11):20-27.
其他文献
【摘要】在高等教育创新发展的背景下,概率统计学的学习受到了社会的广泛关注,而数学在高等教育阶段起着非常关键的作用,在日常生活中应用得相对比较广泛.将数学建模思想运用在概率统计学中,可以充分实现理论与实际的有效结合,一方面可以提升学习效率,另一方面还拓宽了学习的范围,为思维能力的培养提供有效的途径.基于此,首先,在文章的阐述中针对数学建模思想和概率统计学的相关内容进行了阐述;其次,探讨了数学建模思想
2020年1月,突如其来的新冠肺炎疫情席卷全国。病毒突袭而至,疫情来势汹汹,广元市中心医院积极响应党中央号召,闻令而动,精锐出击,精确施策,科学防控,众志成城,共克时艰,以果
【摘要】《义务教育数学课程标准(2011年版)》指出:数学基础知识、基本技能、基本活动经验与基本思想既是数学学习活动的核心内容与主要目标,也是学生数学素养最为重要的组成部分.在小学数学教学的过程中,教师不仅要让学生掌握数学基础知识,训练数学基本技能,还要让学生学会积累数学基本活动经验,同时领悟数学基本思想,这样才能有助于提升学生的数学素养,发展学生的思维.模型思想是数学的基本思想之一.为此,教師要
【摘要】在学习数学分析时我们常会见到一些不等式,当然,其中有一些著名的不等式无论是在解题还是在实际应用中都有重要的作用.笔者认为解决这些不等式的证明应该先找到对应的数学分析知识点,所以,本文中结合数学分析的知识点列举了四种常用的证明不等式的思路.本文中在每一种方法后附加了例题及解答,一些题目是选择了教材上的典型例题,还有一些是考研题目及其改编.不等式的证明往往有多种证明方法,还望读者多思考出更多不
【摘要】随着我国新时期课程改革的推进,探究性教学模式在初中数学学科中的应用受到广大师生的一致青睐.在素质教育教学背景下,广大中学数学教师有必要侧重学生思考能力和应用能力的塑造,激发学生的数学学习兴趣,开发学生的内在学习潜能,促使学生在探究性学习中领会数学学科的核心素养,实现综合素质的发展.  【关键词】初中数学;课堂教学;探究性教学;应用价值  引 言  探究性教学模式侧重学生对知识的自主探究,对