论文部分内容阅读
作为一种深度神经网络结构,与卷积神经网络(CNN)相比,胶囊网络可以建立不同特征之间的空间关系,具有更好地拟合特征的能力。但是,动态路由中原有的聚类算法对初始聚类中心的选择较为敏感。针对这一问题,使用密度峰值聚类(DPC)算法对原有的聚类算法进行优化,提出DPC-CapsNet模型,以提高动态路由算法的整体性能。基于TensorFlow框架的DPCCapsNet模型的实验结果表明,结合了DPC算法的胶囊网络结构在MNIST和Fashion-MNIST数据集上均具有较快的收敛速度,以及较高的分类准确率