热管内气液相分离及传热性能实验研究

来源 :华北电力大学(北京) | 被引量 : 0次 | 上传用户:lzb640418
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着新能源、5G及物联网技术的快速发展,电子设备单位体积内的散热量不断增加,为使设备的运行温度控制在合理范围内,需不断将其废热排出,电子设备的散热问题已成为制约其发展的重要瓶颈。作为一种应用广泛的换热设备,热管是解决散热瓶颈的理想工具。然而,目前传统热管存在诸多不足,难以满足集成式电子器件日益增长的散热需求。因此本文将利用新方法对热管中的传热过程进行研究,以进一步提高热管传热性能。本文采用相分离原理,在热管内构建合理的相分离结构,解决热管蒸发段内蒸气溢出与液体补充间的矛盾以及冷凝段内液膜热阻较大的问题。首先从简单的池沸腾和竖直壁面蒸气冷凝传热入手,在制备多尺度毛细芯、亲疏水条纹表面和超亲水乳突基础上,研究了相变过程中相分离的重要性。然后以多尺度毛细芯环路热管为研究对象,测试并分析了蒸发器内的相分离及相分布对环路热管传热的影响。紧接着在重力热管蒸发段和冷凝段内分别制备了毛细芯及超亲水吸液乳突,实现了蒸发段内气液的分离以及冷凝壁面上液膜的快速分离。最后通过可视化技术探究了重力热管内工质分布对运行特性的影响。主要研究工作包括以下几方面:1.相分离影响传热的机理研究:热管内包含沸腾和冷凝相变过程,在沸腾和冷凝中,气液两相的分离和分布对传热的影响及其重要。为探究相分离对沸腾和冷凝传热的影响机理。本文分别对池沸腾和平板表面的蒸气冷凝进行了深入研究。针对池沸腾中蒸气溢出和液体吸入之间的矛盾,提出使用多尺度毛细芯调节气液两相流通路径的冲突。发现使用多尺度毛细芯能够很好地实现气液两相的分离:多尺度毛细芯内的大孔为蒸气溢出提供通道,而液体从小孔吸入,保证沸腾表面液体供给,大大提升了沸腾表面的传热。针对冷凝传热中冷凝液难以脱离的问题,提出使用超亲水吸液乳突对冷凝液进行抽吸使其从冷凝壁面分离,显著提高了冷凝传热能力。发现在超亲水吸液乳突作用下,相比于普通光滑铜表面,当壁面过冷度为5.3 K时,超亲水吸液乳突可使冷凝传热系数提高83%。沸腾和冷凝传热系数的提高充分彰显了相分离原理对相变传热的影响和重要性。2.环路热管内相分离对传热特性的影响:以环路热管蒸发器为研究对象,在蒸发器内构建了多尺度毛细芯,研究了相分离对环路热管传热特性的影响规律,所述相分离不仅包括毛细芯内气液两相流动路径的分离,还包括蒸发器和补偿腔内气液两相工质的分离。前者影响毛细芯内工质的传热,后者决定了环路热管内的气液两相循环模式。结果表明,在多尺度毛细芯内:蒸气可通过颗粒间的大孔隙溢出,液体则可由小孔径对毛细芯进行润湿,这种多尺度结构中的气液相分离提高了环路热管的传热性能,降低了运行温度。相比于单一尺度毛细芯,当θ=90°,Q=220W时,运行温度降低了 4.6℃。在蒸发器和补偿腔内:气液两相的分离会对环路热管的循环模式产生影响,当补偿腔内蒸气含量增加时,热管运行呈“双循环”模式,当补偿腔被液体所占据时,补偿腔和蒸发器内气液的相分离有利于工质正常循环的建立。实验中还搭建了红外测试装置,对工质在毛细芯中的扩散过程进行了探索,发现毛细芯内液体分布对蒸发器底面温度均匀性有着重要的影响,多尺度毛细芯蒸发器的温度更加均匀,当θ=90°和Q=160 W时,多尺度毛细芯可使蒸发器底板的温度均匀性提高近42%。3.相分离式重力热管内流动与传热性能研究:重力热管内气液两相的合理分布以及冷凝段中液膜的减薄是提高传热性能的关键,因此本文使用多尺度毛细芯和超亲水乳突构建了一种相分离式重力热管,研究了重力热管内气液分离对传热特性的作用。实验结果表明,重力热管运行的稳定性主要受气液两相流动和气泡直径的影响,在蒸发段内增加毛细芯可使液体工质聚集在壁面附近而使蒸气集中在管中心,实现气液分离,抑制了蒸发段内不稳定流动的发生,并提高了液体工质分布的均匀性,强化了蒸发段的传热。当θ=90°,Q=420 W时,热管运行温度下降了 10.7℃,而在θ=60°和90°条件下,临界热流密度也分别提高了 110%和53.3%。在冷凝段内,超亲水乳突的存在实现了冷凝液膜与壁面的快速分离,强化了冷凝段传热,当Q=760W时冷凝传热系数提高了 48.4%。重力热管内工质不同,气液分布也有所不同,本文中还对自湿润流体在重力热管中的应用进行了研究,发现以水为工质时,受热区域液体分布不均匀,导致壁温均匀性较差;而以自湿润流体为工质时,受热区域内液体的含量明显增加,自湿润效果明显,有效解释了以自湿润流体为工质时,重力热管传热性能得到显著提高的原因。
其他文献
近年来,航天热控、新能源利用、相变储能和强化传热等领域对冷凝和沸腾传热特性提出了新的需求和挑战,特别是随着新材料和微纳加工技术的发展,围绕微尺度下流体换热特性的研究受到越来越多的关注。然而伴随流体尺度的降低,影响流体运动及换热的机理发生显著改变,产生了诸多新现象、新规律和新机理,有待深入研究。由于分子动力学方法能够从分子层面上研究粒子间的复杂相互作用,逐渐成为了微尺度下流体换热及相变的主要研究方法
超临界流体(SCF)广泛应用于工程技术领域,其流动传热特性对工程设计十分重要。例如,传热恶化会导致材料壁温严重超温,换热器大压降会导致循环效率降低,以及流动不稳定会引起设备热疲劳破坏或传热变差等。但由于SCF物理微观和宏观行为机理尚不清晰,所以相关问题并未得到很好的解决。按照传统热力学思路,SCF是均匀的单相流体,但最近的研究表明,当穿过Widom线(WL)时,其在微观和宏观上均存在类气和类液之间
超临界CO2动力循环系统具有设备少、热惯性小、运行灵活以及效率优势等特点,已被考虑广泛应用于核电、高温光热发电和燃煤发电等能源领域。作为能量输运介质,超临界CO2流动传热问题对于超临界CO2动力循环换热设备的设计及运行至关重要。目前,根据超临界单相流体假设提出的浮升力效应和流动加速效应并不能完全解释实验中观察到的超临界传热现象。对于超临界流体传热机理,特别是传热恶化的原因仍存在诸多争议。本文通过R
综合能源系统通过对能量生产、传递、转换、存储和消费全过程的有机协调,优化整合热能、电力、天然气等多种形式能源,实现不同类型能量的耦合协同互补与梯级高效利用。综合能源系统可满足用户的多元化用能需求,并且具有高效、环保、经济、可靠和灵活等特点,是实现清洁低碳、安全高效供能的有效途径。然而,在综合能源系统的设计与运行方面仍存在许多科学难题需要开展深入研究。在此背景下,本文针对楼宇型与区域型综合能源系统,
快堆中心测量柱用于为堆内测量设备和控制棒驱动机构提供保护,其完整性与反应堆安全紧密关联。中心测量柱位于堆芯出口上方500mm处,长期受到冷却剂(液钠)的温度影响。在快堆正常运行时,中心测量柱保持高温状态;但当反应堆紧急停堆时,功率的骤然衰减使得堆芯出口温度迅速下降,进而造成中心测量柱表面温度快速降低,产生热冲击现象。严重的热冲击可能使中心测量柱产生热疲劳甚至失效,是快堆中必须关注的问题。为了保护中
中国洪灾最集中频繁的区域是长江中下游地区,对长江流域乃至全国的社会经济发展都具有重大的影响。其中,又以荆江河段受洪灾威胁最为严重,在特大洪水发生时避免荆江河段出现毁灭性灾害是长江防洪的重中之重。三峡工程能直接控制荆江河段95%以上的洪水来量,在保证中下游防洪安全中扮演着重要的角色。自三峡大坝建成以来,长江上游又陆续兴建了乌东德、白鹤滩、溪洛渡、向家坝等一大批防洪库容大、调节能力强的大型水库,极大地
离心压气机是微型燃气机轮中的重要设备之一,其中非稳定流动的存在是阻碍离心压气机高效和安全运行的重要根源。根据失速发生位置的不同,离心压气机失稳现象主要包括叶轮失速和扩压器失速,并且由于扩压器失速引起的压力波动幅值大于叶轮失速而可能带来更强的危害。无叶扩压器由于结构简单、稳定运行范围宽广、生产成本低廉而被广泛使用,但对于其内三维复杂非定常流动规律的研究,尤其是不同宽度比、入流条件下的流场失稳机制,及
大量人为排放温室气体导致了全球范围的气候变化,对自然和人类系统产生了重要影响。在全球气候变暖背景下,除了极地气候范围不断萎缩外,其他气候类型基本上都呈较显著扩张趋势。然而,相关研究多以面积等相关指标进行探索,缺乏对气候本身空间异质性的认识,也包括我国特有的高寒气候。本文基于长时间序列的观测、再分析和气候模型资料,从空间形态角度出发将全球气候空间变化与景观生态指标进行有机结合,构建全球气候景观格局,
我国水能资源蕴藏量十分丰富,但季节间水资源分布差异显著。水库是一种挖掘水能资源潜力,有效缓解地区水资源分布不均衡的工程措施,可将流域的径流资源存蓄起来,以保障枯水期水资源供给。但是,水库汛期往往承担着艰巨的防洪任务,需要将运行水位控制在防洪限制水位以下,这与水库以水头、水量为基础的发电、供水等需求形成矛盾冲突。随着全球气候变暖,各流域气象水文条件发生显著改变,伴随着调度技术、风险分析能力及应急处置
随着世界人口的日益增加,能源的使用也在以同样的顺序增加,因此必须保持我们的能源资源非常高,以满足需求。事实上,由于全世界矿物燃料资源迅速枯竭,寻找替代能源变得至关重要。在运输中,配备内燃机的常规车辆在燃烧化石燃料和造成全球变暖、二氧化碳排放、酸雨等方面起着主导作用,对环境影响很大。太阳能和交通的一体化有利于任何国家的整体环境和经济。因此,需要为交通系统寻找一种可再生能源,使环境变得清洁和绿色。论文