Richart模和主拟-Baer模

来源 :湖南师范大学 | 被引量 : 0次 | 上传用户:bujifangzong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文引入左Richart模和左主拟-Baer模的概念.设M是左R-模,若EndR(M)中任意元()在M中的左零化子是M的直和项,则称M是左Richart模;若EndR(M)中任意左主理想I在M中的左零化子是M的直和项,则称M是左主拟-Baer模.左Richart模和左主拟-Baer模分别是左Richart环和左主拟-Baer环的推广.在文章中,我们分别给出了左Richart模和左主拟-Baer模的等价刻画条件,证明了左Richart模和左主拟-Baer模都对直和项封闭.对于左Richart模,我们给出了左Richart模对直和封闭的等价条件,并且证明了有限生成的Abel群是左Richart模当且仅当它是半单模或无挠模;对于左主拟-Baer模,我们证明了左主拟-Baer环具有Morita等价不变性,以及左主拟-Baer环上的有限生成的投射模是左主拟-Baer模.此外,我们还证明了对于左Richart模和左主拟-Baer模,它们的自同态环也具有同样的性质,并深入探讨了左Richart模、左主拟-Baer模和正则模之间的关系.
其他文献
本文主要讨论了一些二元三角插值算子的一致收敛和强性逼近等问题.本文的第一章是关于逼近论和三角插值方面的预备知识,主要介绍了最佳逼近,连续模,强性逼近等相关概念,并引入了
本文研究了一类特殊的DC规划以及一般DC规划的全局收敛算法。DC规划是一类特殊的非线性规划,人们对此提出了许多好的算法,如Tao所提出的DCA算法([11])数值效果就很好。但是,目前更
本文主要研究强偏差定理。强偏差定理又称小偏差定理(即用不等式表示的强极限定理)是借助于似然比而引进的一种度量,进而建立的一种新型定理。刘文教授于1989年首次采用分析方
函数空间理论,奇异积分算子及其交换子的有界性在现代调和分析中具有十分重要的作用.本文就是在齐型空间上围绕这些问题展开讨论. 函数空间理论的研究一直是倍受人们关注的
考虑拓扑空间之间的映射,如果一个点在两个映射下的像点相同,则称该点为这两个映射的重合点.在代数拓扑学中,人们不仅对重合点的存在感兴趣,也十分关注重合点的个数估计以及重合
由于大数据时代的来临,我们正面临着一项艰巨的任务:从海量的、杂乱无章的、有噪声的、不完备的、模糊的数据中找到有用的知识,即数据挖掘。分类是数据挖掘的一个重要分支,在
复金兹堡-朗道(Ginzburg-Landau)型发展方程是在力学、物理学以及其他领域中用来描述非线性系统的一个简化数学模型.本文主要讨论三种类型的复金兹堡-朗道发展方程. 在第
目前,反问题求解在国际上是一个十分活跃的研究领域,具有重要的理论意义和实用价值.研究对象涉及与探测、识别和设计有关的问题.我们在研究数学物理反问题时,一般可以转化为对第
本学位论文考虑了几类泛函微分方程概周期解、周期解的存在性问题.全文由四部分组成. 第一章绪论简要介绍了研究泛函微分方程概周期解和周期解的背景以及必要的预备知识.