论文部分内容阅读
随着微纳米技术的迅速发展,传统的定位在精度上已经无法达到当前许多行业对精密定位的要求,因此超精密定位系统的研究不断的被国内外学者所重视。在超精密定位系统中,通常采用基于智能材料(如压电陶瓷、磁致伸缩材料、形状记忆合金等)的驱动器,然而这些智能驱动器存在固有的迟滞特性,迟滞是一种具有非平滑、多映射、记忆性的非线性,能够引起系统误差和振荡甚至造成系统不稳定,难以采用常规方法对其进行精确控制。为了消除迟滞非线性对系统造成的不良影响,需要对迟滞进行建模,并设计有效的控制器对其实现精确控制。本文的主要工作有:(1)针对一类由Bouc-Wen模型描述的迟滞非线性系统设计控制器。首先,讨论了Bouc-Wen模型的特性以及它的上界值,然后基于Lyapunov-like函数采用了迭代学习控制方案对其设计了控制器。该方案在经典的PD反馈控制的基础上通过迭代学习项来消除迟滞对系统的不良影响,并实现对进期望轨迹的跟踪。仿真结果证明了该方法的有效性。(2)基于神经网络的迟滞非线性系统建模并设计控制器。针对基于神经网络的一类迟滞非线性系统,提出了动态迟滞算子来扩展输入空间建立神经网络迟滞模型,在此基础上设计了基于Lyapunov-like函数的自适应迭代学习控制器。并通过与传统PID控制相比较,实验结果表明了该控制方案加快了响应速度,并且大幅度提高了控制精度。(3)针对输出受限的迟滞非线性系统设计控制器,并与其他控制方案进行比较。针对一类含有Bouc-Wen迟滞的输出受限非线性系统设计了反步控制器。首先分析了Bouc-Wen模型的特性并得到其上界值,然后设计了对称型Barrier Lyapunov Function(BLF),并在闭环系统中保证了BLF有界,从而满足了输出受限的条件,最后利用反步法设计控制器。该方法消除了迟滞引起的振荡和超调并且使得系统输出约束在设定的范围内,同时解决了迟滞和系统输出受限两个方面的影响,提高了控制精度。仿真和实验结果表明了控制方法的可行性。